InterGrid: Peering Architecture and Policies for Internetworking Disparate Grids

Staff: Rajkumar Buyya, Srikumar Venugopal
Students: Marcos Dias de Assunção
Grid Computing and Distributed Systems (GRIDS) Laboratory
Web: http://www.gridbus.org/intergrid

Grid computing enables the creation of Cyberinfrastructure for e-Research applications. Several nations around the world including Australia have developed their own national Grids based on the notion of virtual organisations. These dispersed Grid initiatives have resulted in islands of Grids without any support for peering arrangements between them. This limitation will impede realisation of full potential of the Grid computing paradigm. This InterGrid project aims to revolutionise Grid computing by investigating and developing (a) architectural principles for interlinking Grids, (b) mechanisms for resource provisioning and allocation within and across Grids and (c) peering policies and algorithms for inter-Grid resource management.

An Application Driver: Scientists from U.S.A, France, New Zealand and Australia have developed mathematical models of kidney functions and have been sharing these models via Grids. It is easy to extrapolate this to sharing of different models related to other organs that are developed within Grids dedicated to them. In order to build a complete model of the human physiology (e.g. IUPS Physiome Project) one needs the capability that supports composition of models from different Grids. These models may be discovered through distributed information services enabled by peering of such Grids, which are controlled by the respective communities. Realising this scenario requires participants to allocate resources from different islands of Grids in a seamless manner, and permit peering among Grids, which are under different administrative policies and political boundaries – as indicated in Figure 1.


Fig. 1: InterGrid-based Integrated Human Physiome Environment.