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Abstract. Recent technological advances in grid computing enable the virtual-
ization and dynamic delivery of computing services on demand to realize utility
computing. In utility computing, computing services will always be available to the
users whenever the need arises, similar to the availability of real-world utilities, such
as electrical power, gas, and water. With this new outsourcing service model, users
are able to define their service needs through Service Level Agreements (SLAs) and
only have to pay when they use the services. They do not have to invest on or
maintain computing infrastructures themselves and are not constrained to specific
computing service providers. Thus, a commercial computing service will face two
new challenges: (i) what are the objectives or goals it needs to achieve in order
to support the utility computing model, and (ii) how to evaluate whether these
objectives are achieved or not. To address these two new challenges, this paper first
identifies four essential objectives that are required to support the utility computing
model: (i) manage wait time for SLA acceptance, (ii) meet SLA requests, (iii) ensure
reliability of accepted SLA, and (iv) attain profitability. It then describes two eval-
uation methods that are simple and intuitive: (i) separate and (ii) integrated risk
analysis to analyze the effectiveness of resource management policies in achieving
the objectives. Evaluation results based on simulation successfully demonstrate the
applicability of separate and integrated risk analysis to assess policies in terms of the
objectives. These evaluation results which constitute an a posteriori risk analysis of
policies can later be used to generate an a priori risk analysis of policies by identifying
possible risks for future utility computing situations.

Keywords: utility computing, grid economy, risk, service, resource management,
performance evaluation

1. Introduction

With the advance of parallel and distributed technologies, such as clus-
ter computing [20][3] and grid computing [9] that enable on-demand
resource sharing across various organizations, commercial vendors such
as Amazon [2], HP [10], IBM [11], and Sun Microsystems [27] are now
progressing aggressively towards realizing the next era of computing
model – utility computing [36]. The vision of utility computing is to
provide computing services whenever users want them. Users no longer
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have to invest heavily on or maintain their own computing infrastruc-
ture. Instead, they just have to pay for what they use whenever they
want by outsourcing jobs to dedicated commercial computing services
for completion. This means that users define their service needs and ex-
pect them to be delivered by commercial computing service providers.
Thus, a commercial computing service will face two new challenges: (i)
what are the objectives or goals it needs to achieve in order to support
the utility computing model, and (ii) how to evaluate whether these
objectives are achieved or not.

Different users have distinctive needs for various jobs and thus de-
mand specific Quality of Service (QoS) for completing these jobs. A
user can negotiate the QoS terms and conditions with a commercial
computing service provider before formally outlining the confirmed
negotiations in a Service Level Agreement (SLA). The SLA acts as
an official contract for the computing service to deliver the expected
QoS to the user.

To support the utility computing model, a commercial computing
service has to solicit resource and QoS requirements from the user to de-
cide whether to accept a service request or not. Resource requirements
specify what is essential to run and complete the job successfully, such
as the number of processors, memory size, disk storage size, and runtime
estimate (estimated time taken to complete the job). QoS requirements
state what is necessary to realize the user’s service target. QoS at-
tributes that can be specified in a SLA include time, cost, reliability,
and/or trust/security [32]. In this paper, we consider two of these QoS
attributes: (i) deadline that a job should be completed in (as time QoS
attribute) and (ii) budget that the user is willing to pay the commercial
computing service for completing the job (as cost QoS attribute).

This paper focuses on evaluating suitable resource management poli-
cies for a commercial computing service to support utility computing
based on its objectives. As there are numerous policies [17][19][13][22][31][32]
available, it is non-trivial to identify the best policy that truly meets
the objectives. Therefore, the key contributions of this paper are to:

− Identify four essential objectives for a commercial computing service
to support the utility computing model: (i) manage wait time for
SLA acceptance, (ii) meet SLA requests, (iii) ensure reliability of
accepted SLA, and (iv) attain profitability.

− Develop two evaluation methods that are simple and intuitive: (i)
separate and (ii) integrated risk analysis to analyze the effective-
ness of resource management policies in achieving the objectives.
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− Provide comprehensive performance analysis of various policies
through trace-based simulation to reveal the best policy in achiev-
ing different objectives for two economic models: (i) commodity
market model and (ii) bid-based model.

Evaluation results based on simulation demonstrate that both sepa-
rate and integrated risk analysis can be applied successfully to evaluate
resource management policies in terms of achieving the objectives.
These evaluation results which constitute an a posteriori risk analysis of
policies can later be used to generate an a priori risk analysis of policies
by identifying possible risks for future utility computing situations.
Thus, commercial computing service providers are now able to identify
and implement ideal policies to realize utility computing.

This paper is organized as follows: Section 2 discusses related work.
Section 3 identifies four essential objectives that a commercial comput-
ing service needs to achieve in utility computing and how they can be
measured. Section 4 describes how separate and integrated risk anal-
ysis can determine whether various resource management policies can
achieve the objectives. Section 5 describes the evaluation methodology
and simulation setup to assess these policies. Section 6 compares the
performance of various policies with regards to the objectives. Section 7
concludes.

2. Related Work

Numerous resource management systems [29][14][21][1][26] are avail-
able to provide different policies to allocate jobs. However, new service
parameters need to be considered and enforced for utility comput-
ing, such as the deadline to complete the job, the budget the user
will pay for its completion, and the penalty for any deadline viola-
tion. Therefore, several new works [24][12][13][22][31][33][35] proposes
policies using admission control to support quality-driven computing
services by selectively accepting new jobs based on certain service
parameters. Admission control helps to maintain the level of service
when there is only a limited supply of computing resources to meet
an unlimited demand of service requests. Hence, when the demand
is higher than the supply of resources, a computing service needs to
either reject new service requests to ensure previously accepted requests
are not affected or compromise previously accepted service requests to
accommodate new requests. But, there is no proposed work to evaluate
the effectiveness of these service-oriented policies in the context of util-
ity computing, in particular the ability to satisfy essential objectives of
a commercial computing service.
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Various other works [15][16][12][22] have addressed some form of
risk in computing jobs. In [12] and [22], the risk of paying penalties to
compensate users is minimized so as not to reduce the profit of service
providers. Computation-at-Risk (CaR) [15][16] determines the risk of
completing jobs later than expected based on either the makespan
(response time) or the expansion factor (slowdown). GridIS [31] shows
that a conservative provider earns much less profit due to accepting too
few jobs to run, as compared to an aggressive provider who earn more
profit even though more jobs result in deadline violations. However,
none of these works consider and model the impact of policies on the
achievement of objectives as risks.

Our work is inspired by service management [30] and risk man-
agement [6] in the field of economics which has been widely studied,
adopted and proven. From the economics perspective, a commercial
computing service in utility computing is a business intended to sell
services to consumers and generate profit from them. Comprehensive
studies in service management [23] have shown that customer satisfac-
tion is a crucial success factor to excel in the service industry. Customer
satisfaction affects customer loyalty, which in turn may lead to refer-
rals of new customers [30]. These achievements thus constitute the
sustainability and improvement of revenue for a business. Therefore,
we apply similar service quality factors for the proposed three user-
centric objectives to ensure that customer satisfaction is achieved. In
addition, economists have proposed enterprise risk management [18] to
manage the risks of a business based on its targeted objectives. Hence,
we adopt a similar approach to evaluate resource management policies
of a commercial computing service with respect to its objectives using
separate and integrated risk analysis.

This paper is the revised version of a preliminary paper [34]. It
incorporates the use of normalized results in the evaluation methods to
generate standardized risk analysis plots that allows better visualiza-
tion and easier comparison of resource management policies (explained
in Section 4). It also encompasses a more extensive experimental study
to better understand the impact of an additional wait objective (man-
age wait time for SLA acceptance) and inaccurate runtime estimates
on the achievement of objectives (explained in Section 5 and 6). In
particular, experiments are conducted in two possible economic models
(commodity market model and bid-based model) to distinguish the
performance and volatility of policies across different economic models.
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Table I. Focus of four essential objectives.

Focus Objective Abbreviation

User-centric Manage wait time for SLA acceptance wait

Meet SLA requests SLA

Ensure reliability of accepted SLA reliability

Provider-centric Attain profitability profitability

3. Objectives of a Commercial Computing Service

This section explains why a commercial computing service wants to
achieve four essential objectives and how to measure these objectives.
As listed in Table I, the four objectives consists of three user-centric ob-
jectives: (i) manage wait time for SLA acceptance (wait), (ii) meet SLA
requests (SLA), (iii) ensure reliability of accepted SLA (reliability);
and one provider-centric objective: (i) attain profitability (profitability).

A user-centric objective can influence service users, whereas a provider-
centric objective can only affect computing services. However, in utility
computing, a commercial computing service also has to consider or
even place greater emphasis on user-centric objectives. This is because
a commercial computing service has to be commercially viable and is
thus heavily dependent on revenue generated by service users who pay
and expect quality-driven and value-added services to be provided.

In addition, we believe that the utility computing model marks
an important milestone for the creation of a free market economy to
buy and sell computing resources based on actual usage. In this free
market economy, we envision the availability of numerous commer-
cial computing services which have the required capability to process
any specific job characteristics at any time. These computing services
will thus actively compete with one another to increase their mar-
ket share of service users so as to increase their revenue. This means
that service users can switch to any computing service whenever they
want. Therefore, ignoring user-centric objectives is likely to result in
dwindling number of users, loss of reputation and revenue, and finally
out-of-business for a commercial computing service.

We consider all four objectives to be equally important and thus
have the same priority as they address various operational aspects of
a commercial computing service, from accepting and fulfilling service
requests (wait and SLA objectives) to monitoring service levels and
monetary yields (reliability and profitability objectives). However, in
the proposed integrated risk analysis (described in Section 4.2), we
allow a computing service to prioritize objectives differently by adjust-
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ing the corresponding weight of each objective. Hence, this provides
the flexibility for different computing services to control the objectives
based on their specific interests.

For the measurement of the wait objective (in Section 3.1), we decide
to compute an average value for it. The average value provides the
central tendency of wait times required for various jobs to be accepted.
The minimum average value of the wait objective is 0 time units.

But, for the measurement of SLA, reliability, and profitability
objectives (in Section 3.2, 3.3 and 3.4), we choose to compute a
percentage value for each of them. Each percentage value provides a
relative performance value with respect to the maximum upper bound
value of a specific objective, which is more informative and meaningful,
as compared to just having an absolute performance value. As an ex-
ample, for the SLA objective, the total number of m jobs submitted to
the computing service is the maximum number of jobs that can possibly
have SLA fulfilled by the computing service. Measuring the percentage
value of nSLA jobs with SLA fulfilled out of the total number of m jobs
submitted is thus more meaningful compared to just the value of nSLA.
The minimum and maximum percentage value of SLA, reliability, and
profitability objectives is 0% and 100% respectively.

3.1. Manage Wait Time for SLA Acceptance

Customers perceive the responsiveness of a business as a service quality
factor because it reflects the willingness of the business to provide fast
service and help customers quickly [23]. Moreover, time is a valuable
and critical factor for an individual or organization to survive and excel
in today’s highly dynamic and competitive environment that demands
continuous monitoring and quick response. In utility computing, a user
submitting the service request for a job has to wait for the commercial
computing service to examine and accept the request before starting the
actual processing of the job. Thus, we assume that every user accessing
the computing service also requires timely processing of their requests
in order to satisfy other personal or organizational commitments. In
other words, a user who wastes greater time to secure a service request
will be more disadvantaged as any delay will impact on the prompt
completion of other commitments.

The process of managing the wait time for SLA acceptance can be
accessed through the typical amount of time taken by the commercial
computing service to accept and execute jobs. Hence, the wait objective
is measured as:

wait =
∑nSLA

i=1 tsti − tsui

nSLA
(1)
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, where tsti is the time when job i starts execution after being accepted,
tsui is the time when job i is submitted to the computing service, and
nSLA is the number of jobs with SLA fulfilled. A lower value of wait is
better than a higher value.

3.2. Meet SLA Requests

Another service quality factor perceived by customers is the assurance
of a business that it is adequately knowledgeable and sufficiently com-
petent [23]. This inspires the trust and confidence of customers in the
business. In utility computing, a commercial computing service has to
assure service users of its ability to satisfy service demand by meeting
SLA requests.

An inability to meet service demand can be verified by a decrease in
the number of requested SLAs that are fulfilled successfully. Therefore,
the SLA objective is computed as:

SLA =
nSLA

m
∗ 100 (2)

, where nSLA is the number of jobs with SLA fulfilled and m is the
number of jobs submitted to the computing service. A higher value of
SLA is better than a lower value.

3.3. Ensure Reliability of Accepted SLA

The level of customer satisfaction for a business can be affected by the
reliability of the business to deliver expected performance dependably
and accurately [23]. In utility computing, since users specify the level
of service they require through SLAs, a commercial computing service
wants to ensure that it is able to really deliver the agreed level of service
by ensuring reliability of accepted SLAs. We assume that a commercial
computing service has monitoring mechanisms to check the progress
of existing job executions and adjust resources accordingly to meet
current and future service obligations.

A compromise in service quality can be ascertained by an increase in
the number of accepted SLAs that are not fulfilled successfully. Thus,
the reliability objective is calculated as:

reliability =
nSLA

n
∗ 100 (3)

, where nSLA is the number of jobs with SLA fulfilled and n is the
number of jobs that are accepted by the computing service. A higher
value of reliability is better than a lower value.
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3.4. Attain Profitability

The most important objective for a commercial computing service is
to attain profitability as Return On Investment (ROI) for providing
the service since commercial businesses are driven by monetary perfor-
mance and thus need to track their monetary yields. We assume that a
commercial computing service has accounting and pricing mechanisms
to record resource usage information and compute usage costs to charge
service users accordingly.

The cost paid by the service users can also be viewed as the util-
ity or ROI earned by the computing service. Hence, the profitability
objective is determined as:

profitability =
∑n

i=1 ui∑m
i=1 bi

∗ 100 (4)

, where
∑n

i=1 ui is the total utility earned from n jobs accepted by the
computing service and

∑m
i=1 bi is the total budget of m jobs that are

submitted to the computing service. A higher value of profitability is
better than a lower value.

4. Risk Analysis

A commercial computing service must now be able to assess whether its
implemented resource management policy is able to achieve any or all
of the objectives to support the utility computing model. This section
proposes two evaluation methods that is derived from enterprise risk
management [18]: (i) separate and (ii) integrated risk analysis. Both
methods evaluate a policy using two indicators: (i) performance and (ii)
volatility. Performance acts as the value measure of the policy, while
volatility acts as the risk measure. Volatility is selected as the risk
measure since it reflects how performance values fluctuate and thus
the consistency of the policy in returning similar performance values.
This section then describes how the level of associated risk can be easily
visualized through risk analysis plots produced from these performance
and volatility values.

4.1. Separate Risk Analysis

Separate risk analysis analyzes the performance and volatility involved
in a single objective for a particular scenario. An example of a scenario
is varying workload whereby only the workload changes while the rest of
the experiment settings remains the same. Hence, measuring a specific
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objective for the varying workload scenario will return a total of n
results for each different n workload.

However, the raw values measured for the four objectives do not
constitute a consistent and correct outcome. As highlighted in Sec-
tion 3, a lower value of the wait objective is better than a higher value,
whereas a higher value of SLA, reliability, and profitability objec-
tives is better than a lower value. Therefore, we normalize these raw
values accordingly to obtain normalized values that are standardized
within the range 0 to 1, with the minimum value of 0 symbolizing the
worst performance and the maximum value of 1 symbolizing the best
performance respectively.

The performance µsep and volatility σsep for the separate risk anal-
ysis of an objective in a particular scenario can be computed as the
mean of all n normalized results obtained in the scenario and standard
deviation of these n normalized results respectively:

performance, µsep =
∑n

i=1 normalized resulti
n

(5)

volatility, σsep =

√∑n
i=1 (normalized resulti)

2

n
− (µsep)

2 (6)

, where 0 ≤ normalized resulti ≤ 1.

4.2. Integrated Risk Analysis

Since separate risk analysis only examines a single objective and there
is more than one objective to realize utility computing, it is critical to
be able to assess a combination of multiple objectives in an integrated
fashion.

Given that there is a total of n objectives to examine for a particular
scenario, the performance µint and volatility σint of the integrated risk
analysis can be computed using the performance µsep,i and volatility
σsep,i measures from the separate risk analysis of each objective i:

performance, µint =
n∑

i=1

wi ∗ µsep,i (7)

volatility, σint =
n∑

i=1

wi ∗ σsep,i (8)

, where 0 ≤ wi ≤ 1 and
∑n

i=1 wi = 1. wi is a weight to denote the
importance of an objective i with respect to other objectives. These
weights for various objectives provide a flexible means for the service
provider to easily adjust the importance of an objective and determine
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Figure 1. Sample risk analysis plot of policies.

Table II. Performance and volatility of policies in the sample risk analysis plot.

Policy Performance Volatility

Maximum Minimum Difference Maximum Minimum Difference

A 1.0 1.0 0.0 0.0 0.0 0.0

B 0.9 0.9 0.0 0.6 0.3 0.3

C 0.7 0.2 0.5 1.0 0.3 0.7

D 0.7 0.2 0.5 1.0 0.3 0.7

E 0.7 0.5 0.2 0.3 0.1 0.2

F 0.7 0.2 0.5 0.7 0.3 0.4

G 0.7 0.4 0.3 1.0 0.3 0.7

H 0.7 0.2 0.5 1.0 0.3 0.7

its level of impact on the overall achievement of a combination of
objectives. For the experiments, since we consider all the objectives
to be of equal importance, wi of each objective i in a combination of
three objectives and all four objectives are thus 0.33 (1/3) and 0.25
(1/4) respectively.

4.3. Risk Analysis Plot

Risk analysis plots can now be generated using the performance and
volatility values of various resource management policies in all the sce-
narios. A risk analysis plot can be generated for a single objective (using
separate risk analysis) or a combination of objectives (using integrated
risk analysis) to easily visualize the level of associated risk for achieving
them. Figure 1 shows a sample risk analysis plot of eight policies for
five scenarios.
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Table III. Ranking of policies based on best performance in the sample risk analysis
plot.

Rank Policy Maximum
performance

Minimum
volatility

Performance
difference

Volatility
difference

Gradient of
trend line

1 A 1.0 0.0 0.0 0.0 NA

2 B 0.9 0.3 0.0 0.3 Zero

4 E 0.7 0.1 0.2 0.2 Decreasing

3 G 0.7 0.3 0.3 0.7 Increasing

5 F 0.7 0.3 0.5 0.4 Increasing

6 C 0.7 0.3 0.5 0.7 Decreasing

7 D 0.7 0.3 0.5 0.7 Decreasing

8 H 0.7 0.3 0.5 0.7 Increasing

Table IV. Ranking of policies based on best volatility in the sample risk analysis
plot.

Rank Policy Minimum
volatility

Maximum
performance

Volatility
difference

Performance
difference

Gradient of
trend line

1 A 0.0 1.0 0.0 0.0 NA

2 E 0.1 0.7 0.2 0.2 Decreasing

3 B 0.3 0.9 0.3 0.0 Zero

4 F 0.3 0.7 0.4 0.5 Increasing

5 G 0.3 0.7 0.7 0.3 Increasing

6 C 0.3 0.7 0.7 0.5 Decreasing

7 D 0.3 0.7 0.7 0.5 Decreasing

8 H 0.3 0.7 0.7 0.5 Increasing

In a risk analysis plot, each point for a policy represents the perfor-
mance and volatility of that policy for a particular scenario. Since the
sample plot in Figure 1 considers five scenarios, there can only be a
maximum of five different points for a policy in the plot. A trend line
may then be plotted using these points to reflect the general perfor-
mance and volatility of that policy. A policy cannot have a trend line
if it does not have any or too few different points for all the various
scenarios. For example, in Figure 1, policy A has the same points for
all scenarios and thus does not have a trend line.

Table II shows the maximum and minimum values of the eight poli-
cies for performance and volatility in Figure 1 and their respective
differences. A policy achieving a higher performance is better than
achieving a lower performance, whereas a policy achieving a higher
volatility is worse than achieving a lower volatility. This is because a

grid_risk_analysis.tex; 12/03/2008; 19:03; p.11



12 Chee Shin Yeo and Rajkumar Buyya

higher volatility means that performance results fluctuate more, thus
increasing the possibility that the same performance cannot be achieved
for various scenarios. In a risk analysis plot, the best performance that
can be achieved by a policy is the maximum performance value of 1.
On the other hand, the best volatility that can be achieved by a policy
is the minimum volatility value of 0. Therefore, in Figure 1, policy A is
the best ideal policy since it achieves the same best ideal performance
of 1 for all five scenarios, and thus also the best ideal volatility of 0.

Table III and IV shows the ranking of policies based on best per-
formance and volatility respectively in the sample risk analysis plot.
For best performance, a policy is ranked in the following order: (i)
maximum performance, (ii) minimum volatility, (iii) performance dif-
ference, (iv) volatility difference, and (v) gradient of trend line. For
best volatility, the volatility of a policy is first considered before its
performance. Hence, for best volatility, a policy is ranked in the fol-
lowing order: (i) minimum volatility, (ii) maximum performance, (iii)
volatility difference, (iv) performance difference, and (v) gradient of
trend line.

A higher value is preferred for maximum performance, but a lower
value is preferred for minimum volatility. For both performance and
volatility differences, a lower value is preferred as it represents a shorter
range of possibilities. The preferred order of gradient is as follows: (i)
decreasing, (ii) increasing, and (iii) zero. A decreasing gradient indi-
cates a lower volatility for higher performance, whereas an increasing
gradient indicates a higher volatility. A zero gradient signifies changing
volatility with no change in performance. Thus, in Table III and IV,
policies C and D are better than policy H as they have decreasing
gradients. But, policy C is better than policy D because most of the
points (four of five points) for policy C are near to its maximum per-
formance of 0.7 and minimum volatility of 0.3, compared to the evenly
distributed points for policy D.

5. Performance Evaluation

In order to thoroughly demonstrate the applicability of separate and
integrated risk analysis, this section investigates whether a commercial
computing service is able to achieve the objectives in two possible eco-
nomic models: (i) commodity market model and (ii) bid-based model.
This section first describes the differences between the commodity mar-
ket model and bid-based model, before specifying the various resource
management policies that will be examined for each of them. It then ex-
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Figure 2. Bid-based model: Impact of penalty function on utility.

plains the evaluation methodology, followed by outlining the scenarios
for the experiments.

5.1. Economic Models

In this chapter, there are two differences between the commodity mar-
ket model and bid-based model. The first difference is how to determine
the price. In the commodity market model, the commercial computing
service specifies the price that users will pay for the amount of resources
consumed. Pricing parameters can be usage time and usage quantity,
while prices can be flat or variable. A flat price means that pricing is
fixed for a certain time period, whereas a variable price means that
pricing changes over time. However, the commercial computing service
can only charge a cost which is lower than or equal to the maximum
budget specified by the user when he submits the job. This also means
that a job will be rejected by the commercial computing service if the
expected cost of the job is higher than the specified budget. In the
bid-based model, the user provides the bid or price that he will pay the
commercial computing service for completing the job.

The second difference is any penalty involved when the commercial
computing service fails to meet a SLA (which is to complete a job within
its deadline). In the commodity market model, there is no penalty
involved. The commercial computing service continues to charge the
user based on the usual pricing parameter and price. But in the bid-
based model, the commercial computing service is liable to be penalized
based on the penalty function shown in Figure 2. The penalty function
penalizes the commercial computing service by reducing the budget of
a job over time after the lapse of its deadline. For simplicity, we model
the penalty function as linear, as in other previous works [5][12][22].
For every job i, the commercial computing service earns a utility ui
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Table V. Policies for performance evaluation.

Policy Economic model Primary scheduling parameter

Commodity
market
model

Bid-based
model

Arrival
time

Runtime Deadline Budget
with
penalty

FCFS-BF � � 6
SJF-BF � 6
EDF-BF � � 6
Libra � � 6
Libra+$ � 6
LibraRiskD � 6
FirstReward � 6

depending on its penalty rate pri and delay dyi:

ui = bi − (dyi ∗ pri) (9)

Job i has a delay dyi if it needs a longer time to complete than its
specified deadline di:

dyi = (tfi − tsui)− di (10)

where tsui is the time when job i is submitted into the computing
service and tfi is the time when job i is finished. Thus, job i has no
delay (i.e. dyi = 0) if it finishes before the deadline and the computing
service earns the full budget bi as utility ui. But, if there is a delay
(i.e. dyi > 0), ui drops linearly until it turns negative and becomes a
penalty (i.e. ui < 0). As shown in Figure 2, the penalty is unbounded
till the time when the job is finally completed. This implies that the
commercial computing service must be cautious about accepting new
jobs to ensure that not too many jobs are accepted such that heavily
penalized jobs dramatically erode previously earned utility.

5.2. Resource Management Policies.

Table V lists five resource management policies to be examined for each
economic model and the primary scheduling parameter they consider to
allocate resources to jobs. This subsection first describes how each pol-
icy works in general, before explaining the difference between policies
examined in the commodity market model and bid-based model.

FCFS-BF, SJF-BF, and EDF-BF are backfilling policies which pri-
oritize jobs based on arrival time (First Come First Serve), runtime
(Shortest Job First), and deadline (Earliest Deadline First) respec-
tively. All three policies adopt EASY backfilling [17][19] to increase
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resource utilization. A queue is used to store incoming jobs as only a
single job can run at a processor at any time (i.e. space-shared). When
insufficient number of processors is available for the first job (with the
highest priority) in the queue, EASY backfilling assigns these unused
processors to the next waiting jobs in the queue provided that they do
not delay the first job based their runtime estimates. In other words,
jobs that skip ahead must finish before the time when the required
number of processors by the first job is expected to be available.

These three variations of EASY backfilling policy are chosen for
comparison because EASY backfilling is currently the most widely used
policy for scheduling parallel jobs in commercial cluster batch sched-
ulers [7]. However, we find that these policies without job admission
control perform much worse, especially when deadlines of jobs are short.
Hence, we implement a generous admission control that checks whether
a job should be rejected based on two conditions before running it: (i)
the job is predicted to exceed its deadline based on its runtime estimate,
and (ii) the job has already exceeded its deadline while waiting in the
queue. This generous admission control enables FCFS-BF, SJF-BF,
and EDF-BF to select their highest priority job at the latest time,
while ensuring that earlier jobs whose deadlines have lapsed do not
incur propagated delay for later jobs.

Libra [24] uses deadline-based proportional processor share with job
admission control to enforce the deadlines of jobs. A minimum processor
time share is computed for each job i as tri/di using its runtime estimate
tri and deadline di so that job i is accepted only if there are sufficient
required number of processors with the free minimum processor time
share. This means that multiple jobs can run at a processor at any
time, using its allocated minimum processor time share (i.e. time-
shared). Unlike the above backfilling policies, no queue is maintained
so a new job is checked during submission and rejected immediately
if its deadline is not expected to be fulfilled. Libra chooses suitable
processors based on the best fit strategy, i.e. processors that have the
least available processor time left with the new job will be selected first
so that every processor is saturated to its maximum. Any remaining
free processor time is then distributed among all jobs at the processor
according to the computed processor time share of each job.

Libra+$ [35] is Libra with an enhanced pricing function that satisfies
four essential requirements for pricing of resources to prevent work-
load overload: (i) flexible, (ii) fair, (iii) dynamic, and (iv) adaptive.
The price Pij for per unit of resource utilized by job i at compute
node j is computed as: Pij = (α ∗ PBasej) + (β ∗ PUtilij). The base
price PBasej is a static pricing component for utilizing a resource at
node j. The utilization price PUtilij is a dynamic pricing component
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which is computed as a factor of PBasej based on the utilization of
the resource at node j for the required deadline of job i: PUtilij =
RESMaxj/RESFreeij ∗PBasej . RESMaxj and RESFreeij are the
maximum units and remaining free units of the resource at node j for
the deadline duration of job i respectively. Hence, RESFreeij has been
deducted units of resource committed for other confirmed reservations
and job i for its deadline duration.

The factors α and β for the static and dynamic components of
Libra+$ respectively provides the flexibility for the cluster owner to
easily configure and modify the weightage of the static and dynamic
components on the overall price Pij . Libra+$ is fair since jobs are priced
based on the amount of different resources utilized. It is also dynamic
because the overall price of a job varies depending on the availability
of resources for the required deadline. Finally, it is adaptive as the
overall price is adjusted depending on the current supply and demand
of resources to either encourage or discourage job submission. For the
experiments, α is 1 and β is 0.3.

LibraRiskD [33] is also an improvement of Libra and uses the same
deadline-based proportional processor share. The difference is that Li-
braRiskD considers the risk of deadline delay when selecting suitable
nodes for a new job. Nodes are selected for a new job only if they
have zero risk of deadline delay. This enables LibraRiskD to manage
the risk of inaccurate runtime estimates more effectively than Libra.
LibraRiskD is thus able to complete more jobs with deadline fulfilled
and achieve lower average slowdown than Libra.

FirstReward [12] determines possible future earnings PVi with pos-
sible opportunity cost penalties costi based on the penalty rate pri and
estimated remaining runtime RPTi of a job i. The reward rewardi is
then calculated through a α-weighting function as: rewardi = ((α ∗
PVi)−((1−α)∗costi))/RPTi. The earnings PVi of a job i is computed
as: PVi = bi/(1 + (discount rate ∗ RPTi)), where bi is the budget
of job i. For unbounded penalties, the penalty cost costi of a job i
is the sum of penalty for all other n accepted jobs based on RPTi:
costi =

∑n
j=0;j 6=i(prj ∗ RPTi). The admission control of FirstReward

computes the slack slacki of a new job i during submission and rejects
the job immediately if slacki is less than a specified slack threshold:
slacki = (PVi − costi)/pri. The slack threshold determines the bal-
ance of earnings and penalties where a high threshold avoids future
commitments that can result in possible penalties. Setting the correct
slack threshold is not trivial as the ideal slack threshold changes de-
pending on the workload. After testing various slack threshold values
for the simulated workload, we derive the following ideal simulation
settings for FirstReward: α is 1, the discount rate is 1%, and the slack
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threshold is 25. We have also extended the FirstReward to consider
multiple-processor parallel jobs since the original work only considers
single-processor jobs. However, we do not make FirstReward to support
backfilling, so delays may occur due to waiting for the required number
of processors.

Table V shows that some policies (FCFS-BF, EDF-BF, and Libra)
are examined in both commodity market model and bid-based model.
As previously explained in Section 5.1, the only difference between these
two models is how to determine the utility earned by the commercial
computing service.

In the commodity market model, the policies (FCFS-BF, SJF-BF,
EDF-BF, Libra, and Libra+$) earn utility based on the different pricing
rates each of them charge. However, the maximum utility that can be
earned for a job is restricted by the user-specified budget. In other
words, a job that is expected to cost more than the specified budget
will be rejected. FCFS-BF, SJF-BF, and EDF-BF charge the user based
on the static base price PBasej of using processing time at node j, so
the commercial computing service earns a utility of tri∗PBasej for job
i with runtime tri. For the experiments, PBasej is $1 per second for all
nodes. Libra uses a static pricing function that provides incentives for
jobs with a more relaxed deadline to compute a utility of γ∗tri+δ∗tri/di

for job i with runtime tri and deadline di. γ is a factor for the first
component that computes the cost based on the runtime of the job, so
that longer jobs are charged more than shorter jobs. δ is a factor for
the second component that provides incentives for jobs with a more
relaxed deadline, so as to encourage users to submit jobs with longer
deadlines. For the experiments, both γ and δ are 1. Libra+$ uses an
enhanced pricing function as described earlier in this section. But, for
a job i, Libra+$ can compute different price Pij at each node j since
workload conditions can vary at different nodes. Hence, to maximize
revenue, Libra+$ uses the highest price Pij among allocated nodes as
the price for job i.

On the other hand, in the bid-based model, all policies (FCFS-BF,
EDF-BF, Libra, LibraRiskD, and FirstReward) can earn a maximum
utility equal to the budget (bid) of the job specified by the user for
completing the job within its deadline. If these policies cannot com-
plete a job within its deadline, the utility reduces and can instead
become a penalty depending on when the job is eventually completed
(as described in Section 5.1).

Finally, all the policies are assumed to be non-preemptive. In other
words, jobs that are started need to complete entirely and are not
paused or terminated after the lapse of their deadlines. This leads to
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the issue of whether the non-preemptive policies will be affected by the
inaccuracy of runtime estimates.

Under estimation of runtime estimates of previously accepted jobs
can result in delays that cause later accepted jobs not to finish within
their expected deadlines. For the commodity market model, potential
utility is lost when fewer later arriving jobs are accepted due to the
delays caused by previously accepted jobs. For the bid-based model,
the loss of utility can be caused by accepting fewer later arriving jobs
and paying penalties to compensate users for delays.

Conversely, over estimation of runtime estimates allows fewer jobs
to be accepted since admission controls unnecessarily reject jobs after
predicting that their deadlines cannot be fulfilled. For the commod-
ity market model, higher utility may however be gained as the prices
charged are computed using the over-estimated runtime estimates. But,
for the bid-based model, potential utility is lost as fewer jobs are
accepted.

5.3. Evaluation Methodology

The evaluation uses a discrete event simulator called GridSim [4][25]
to run the experiments. The experiments are generated from a subset
of the last 5000 jobs in the SDSC SP2 trace (April 1998 to April 2000)
version 2.2 from Feitelson’s Parallel Workload Archive [8].

The SDSC SP2 trace is chosen because it has the highest resource
utilization of 83.2% among other traces to ideally model the heavy
workload scenario for a computing service. This 5000 job subset based
on the last 3.75 months of the SDSC SP2 trace requires an average
of 17 processors and has an average inter arrival time of 1969 seconds
(32.8 minutes) and average runtime of 8671 seconds (2.4 hours). The
computing service that is simulated resembles the IBM SP2 at San
Diego Supercomputer Center (SDSC) with 128 compute nodes, each
having a SPEC rating of 168.

However, jobs submitted to a commercial computing service in util-
ity computing need to have three other significant parameters (dead-
line, budget, and penalty) which is unfortunately unavailable in this
trace and from an actual commercial computing service. Therefore, we
adopt a similar methodology in [12] to model these parameters through
two job classes: (i) high urgency and (ii) low urgency.

Given that a job i has deadline di, budget bi, penalty rate pri, and
runtime tri, jobs in the high urgency class has a deadline of low di/tri

value, budget of high bi/f(tri) value, and penalty rate of high pri/g(tri)
value. f(tri) and g(tri) are functions to represent the minimum budget
and penalty rate that the user will quote with respect to runtime tri.

grid_risk_analysis.tex; 12/03/2008; 19:03; p.18



Integrated Risk Analysis for a Commercial Computing Service in Utility Computing19

Conversely, each job in the low urgency class has a deadline of high
di/tri value, budget of low bi/f(tri) value, and penalty rate of low
pri/g(tri) value. This model is realistic since a user who submits a
more urgent job to be completed within a shorter deadline is likely
to offer a higher budget for the job to be finished on time and also
specify a higher penalty if the job is delayed beyond its deadline. The
arrival sequence of jobs from the high urgency and low urgency classes
is randomly distributed.

Values are normally distributed within each of the three parameters.
The ratio of each parameter’s high-value mean and low-value mean
is thus known as the high:low ratio. A higher deadline high:low ratio
indicates that low urgency jobs have longer deadlines than that of a
lower ratio. For instance, a deadline high:low ratio of 8 means the di/tri

mean of low urgency jobs is two times more than that of a deadline
high:low ratio of 4. On the other hand, a higher budget or penalty
high:low ratio denotes that high urgency jobs have larger budget or
penalty than that of a lower ratio.

Since the deadline, budget and penalty rate of a job will now always
be set as a larger factor of runtime, we introduce a bias parameter to
counter against this issue. For example, the deadline bias bdi works
such that a job i with a runtime more than the average runtime of all
jobs (i.e. longer runtime) will have a deadline di = di/bdi (i.e. shorter
deadline). But if job i has a runtime less than the average runtime of
all jobs (i.e. shorter runtime), then it will have di = di ∗ bdi (i.e. longer
deadline). This works likewise for budget and penalty bias.

Different levels of workload are modeled through the arrival delay
factor which sets the arrival delay of jobs based on the inter arrival
time from the trace. For example, an arrival delay factor of 0.1 means
a job with 600 seconds of inter arrival time from the trace now has a
simulated inter arrival time of 60 seconds. Hence, a lower arrival delay
factor represents higher workload by shortening the inter arrival time
of jobs.

The inaccuracy of runtime estimates is measured with respect to the
actual runtime estimates of jobs obtained from the trace. An inaccuracy
of 100% is equivalent to the actual runtime estimates from the trace,
whereas an inaccuracy of 0% assumes runtime estimates are accurate
and equal to the real runtimes of the jobs. For the actual runtime
estimates from the last 5000 job subset of the SDSC SP2 trace, only
8% of them are under estimates, while the remaining 92% of them are
over estimates. This means that runtime estimates provided by users
are often over estimated.
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Table VI. Varying values of twelve scenarios.

Percentage of
high urgency
jobs

Arrival
delay
factor

Percentage of
inaccuracy of
runtime esti-
mates

Bias
(deadline,
budget,
penalty)

High:low
ratio
(deadline,
budget,
penalty)

Low-value
mean
(deadline,
budget,
penalty)

0 0.02 (Set A) 0 1 1 1

20 0.10 20 2 2 2

40 0.25 40 4 4 4

60 0.50 60 6 6 6

80 0.75 80 8 8 8

100 1.00 (Set B) 100 10 10 10

Note: underline denotes default value.

5.4. Scenarios

We can now apply separate and integrated risk analysis (introduced in
Section 4) to assess the resource management policies with respect to
the four essential objectives (defined in Section 3). For each objective,
we consider twelve scenarios. Table VI lists the twelve scenarios and
their varying values for the experiments.

Each of the varying bias, varying high:low ratio, and varying low-
value mean scenarios is for the deadline, budget, and penalty parame-
ters respectively, thus creating a total of nine scenarios. For simplicity,
we have set the deadline, budget, and penalty parameters to have the
same default and varying values for varying bias, varying high:low ra-
tio, and varying low-value mean scenarios. The three other remaining
scenarios are varying percentage of high urgency jobs (job mix), varying
arrival delay factor (workload), and varying percentage of inaccuracy
of runtime estimates. For each scenario, there is only one set of varying
values, while the rest of the experiment settings remains the same with
default values (underlined in Table VI). Table VI also shows six varying
values in each scenario, thus deriving six normalized results to compute
the separate risk analysis of a particular objective.

Previous studies [19][28] have shown that runtime estimates pro-
vided by users are rather inaccurate. Hence, for each economic model
(commodity market model and bid-based model), we run two different
sets of experiments: (i) Set A and (ii) Set B to examine the impact of
inaccuracy of runtime estimates on the achievement of objectives. The
only different setting between Set A and Set B is the default value for
percentage of inaccuracy of runtime estimates as shown in Table VI: Set
A has 0% of inaccuracy to represent accurate runtime estimates, while
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Set B has 100% of inaccuracy to represent actual runtime estimates
from the trace.

6. Performance Results

This section analyzes the performance results of various resource man-
agement policies for two economic models: (i) commodity market model
and (ii) bid-based model. As there are four essential objectives to realize
utility computing (as defined in Section 3), it examines the performance
results using three approaches for each economic model: (i) separate
risk analysis of one objective, (ii) integrated risk analysis of three
objectives, and (iii) integrated risk analysis of all four objectives. The
integrated risk analysis of three objectives enables the understanding of
how the combination of all the other remaining objectives will perform
in the absence of a particular objective.

6.1. Commodity Market Model

Figure 3 shows the separate risk analysis of one objective (wait, SLA,
reliability, and profitability) in Set A (accurate runtime estimates)
and Set B (actual runtime estimates from the trace) for the commodity
market model. For the wait objective in Set A (Figure 3a) and Set B
(Figure 3b), Libra and Libra+$ have the best ideal performance and
volatility of 1 and 0 respectively since jobs are examined immediately
after submission to determine whether their deadlines can be fulfilled
or not. On the other hand, FCFS-BF, SJF-BF, and EDF-BF have lower
performance and higher volatility as they keep jobs in queues and ex-
amine them only prior to execution to enable a better selection choice.
Out of these three policies, SJF-BF returns the best performance and
volatility because it selects the shortest job to execute first and thus
requires queued jobs to wait the least before being examined. EDF-BF
returns the worst performance and volatility since jobs that arrive later
but have earlier deadlines will execute first, thus delaying other jobs
submitted earlier before them.

For the SLA objective in Set A (Figure 3c) and Set B (Figure 3d),
SJF-BF has either similar or better performance than EDF-BF, while
EDF-BF has better performance than FCFS-BF. This is due to the
fact that the evaluation methodology always set the deadline of a job
as a larger factor of its runtime for all scenarios (except deadline bias).
Thus, SJF-BF has the best performance among these three policies
by executing the job with the shortest runtime first, whereas FCFS-
BF has the worst performance by considering the arrival time and not
deadline.
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Figure 3. Commodity market model: Separate risk analysis of one objective
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Libra+$ has lower performance and slightly higher volatility than
Libra in Set A and Set B since it accepts and fulfills a lower number
of jobs by increasing the pricing as the workload increases. In Set A,
Libra and Libra+$ have the best performance. But, in Set B, Libra and
Libra+$ have the worst performance for the similar volatility as that
of FCFS-BF, SJF-BF, and EDF-BF. In particular, Libra and Libra+$
have increasing performance with decreasing volatility (decreasing gra-
dient) in Set A which is a better result, compared to constant or
increasing performance with increasing volatility (zero and increasing
gradient) in Set B which is a worse result.

This highlights the issue of inaccurate runtime estimates. Libra
and Libra+$ assume accurate runtime estimates and thus accept a
lower number of jobs in Set B with the actual runtime estimates from
the trace being inaccurate. FCFS-BF, SJF-BF, and EDF-BF are less
affected than Libra and Libra+$ in Set B because of the generous ad-
mission control we implemented for them. New jobs are only examined
and accepted prior to execution when the previously accepted jobs are
completed and not during job submission in the case of Libra and
Libra+$.

For the reliability objective in Set A (Figure 3e) and Set B (Figure 3f),
the impact of inaccurate runtime estimates on Libra and Libra+$ can
be clearly seen. In Set A, Libra and Libra+$ have a single point de-
viation due to the scenario of inaccuracy of runtime estimates. In Set
B, Libra and Libra+$ have substantially lower performance and higher
volatility as the actual runtime estimates from the trace are highly
inaccurate. In contrast, FCFS-BF, SJF-BF, and EDF-BF have the best
ideal performance and volatility of 1 and 0 respectively in Set A and
Set B.

For the profitability objective in Set A (Figure 3g) and Set B
(Figure 3h), Libra+$ has the best performance. In addition, only Li-
bra+$ has increasing performance with decreasing volatility (decreas-
ing gradient), whereas all other policies have increasing performance
with increasing volatility (increasing gradient). This demonstrates the
effectiveness of the enhanced pricing function used by Libra+$ to gain
significantly higher utility than all other policies, even when the number
of jobs accepted is lower in Set B (Figure 3d). However, Libra+$ has
higher volatility than all other policies in Set B.
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Figure 4. Commodity market model: Integrated risk analysis of three objectives

grid_risk_analysis.tex; 12/03/2008; 19:03; p.24



Integrated Risk Analysis for a Commercial Computing Service in Utility Computing25

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

P
e
rf

o
rm

a
n
c
e

Volatility (Standard Deviation)

FCFS-BF
EDF-BF
SJF-BF

Libra
Libra+$, β=0.3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

P
e
rf

o
rm

a
n
c
e

Volatility (Standard Deviation)

FCFS-BF
EDF-BF
SJF-BF

Libra
Libra+$, β=0.3

a. Set A: wait, SLA, reliability, profitability b. Set B: wait, SLA, reliability, profitability

Figure 5. Commodity market model: Integrated risk analysis of all four objectives

Figure 4 shows the integrated risk analysis of three objectives in Set
A (accurate runtime estimates) and Set B (actual runtime estimates
from the trace) for the commodity market model. For the three combi-
nations of objectives that include the profitability objective in Set A
(Figure 4a, 4c, and 4e) and Set B (Figure 4b, 4d, and 4f), Libra+$ has
higher performance than Libra. Libra+$ has lower performance than
Libra only for the combination of objectives without the profitability
objective in Set A (Figure 4g) and Set B (Figure 4h). This reinforces
that Libra+$ is able to gain higher utility through its enhanced pricing
function.

Again, the inaccuracy of runtime estimates can be observed to dra-
matically affect the performance of Libra and Libra+$. For the combi-
nation of objectives without SLA (Figure 4d) and reliability (Figure 4f)
objectives, the performance of Libra and Libra+$ are somewhat similar
or slightly worse than FCFS-BF, SJF-BF, and EDF-BF. But, for the
combination of objectives without wait (Figure 4b) and profitability
(Figure 4h) objectives, the performance of Libra and Libra+$ are much
worse than FCFS-BF, SJF-BF, and EDF-BF. Libra and Libra+$ are
thus able to achieve considerably better performance than FCFS-BF,
SJF-BF, and EDF-BF for wait and profitability objectives.

Another interesting observation pertains to the three backfilling poli-
cies: FCFS-BF, SJF-BF, and EDF-BF. For the three combinations of
objectives that include the wait objective in Set A (Figure 4c, 4e, and
4g) and Set B (Figure 4d, 4f, and 4h), SJF-BF has the best performance
and volatility, while EDF-BF has the worst performance. When the
wait objective is excluded in Set A (Figure 4a) and Set B (Figure 4b),
these three policies have almost similar performance and volatility. This
highlights that the amount of wait time for SLA acceptance incurred by
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these three policies for the wait objective critically affects the overall
achievement of objectives.

Figure 5 shows the integrated risk analysis of all four objectives in
Set A (accurate runtime estimates) and Set B (actual runtime estimates
from the trace) for the commodity market model. In Set A (Figure 5a),
Libra and Libra+$ have the best performance. In particular, Libra and
Libra+$ have increasing performance with decreasing volatility (de-
creasing gradient) which is better, compared to FCFS-BF, SJF-BF, and
EDF-BF which have increasing performance with increasing volatility
(increasing gradient). Libra+$ is able to achieve the best performance
due to the capability of its enhanced pricing function to achieve very
much better performance for the profitability objective.

But, in Set B (Figure 5b), Libra and Libra+$ have the worst perfor-
mance as the actual runtime estimates from the trace are inaccurate.
Libra and Libra+$ also have increasing performance with increasing
volatility (increasing gradient) in Set B which is worse, compared to
having increasing performance with decreasing volatility (decreasing
gradient) in Set A. Instead, SJF-BF has the best performance and
volatility in Set B. This exposes the weakness of non-preemptive poli-
cies using admission controls that rely on accurate runtime estimates to
examine and accept jobs at job submission, especially when the actual
runtime estimates from the trace are highly inaccurate.

6.2. Bid-based Model

Figure 6 shows the separate risk analysis of one objective (wait, SLA,
reliability, and profitability) in Set A (accurate runtime estimates)
and Set B (actual runtime estimates from the trace) for the bid-based
model. For the wait objective in Set A (Figure 6a) and Set B (Figure 6b),
Libra and LibraRiskD have the best ideal performance and volatility
of 1 and 0 respectively since jobs are examined immediately after sub-
mission to determine whether their deadlines can be fulfilled or not.
FirstReward has the next best performance and volatility as it also
examines new jobs immediately after submission. But, FirstReward has
lower performance and higher volatility than Libra and LibraRiskD
because of two reasons. The first reason is that FirstReward delays
previously accepted jobs to accept new jobs that are more profitable.
The second reason is that FirstReward is unable to start the execu-
tion of accepted jobs immediately if the required number of processors
is not available due to its assumption of space-shared execution. On
the other hand, Libra and LibraRiskD assume time-shared execution
and immediately starts the execution of accepted jobs by allocating
processor time based on the deadline and runtime estimate of each job.
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Figure 6. Bid-based model: Separate risk analysis of one objective
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For the SLA objective in Set A (Figure 6c) and Set B (Figure 6d),
FirstReward has the worst performance, but the best volatility as it
accepts fewer jobs than the other policies. This is because FirstReward
is more risk-averse when considering unbounded penalty and thus ac-
cepts fewer jobs to reduce the possibility of incurring penalty. Another
possible reason is that FirstReward does not support backfilling and
thus may accept fewer jobs compared to FCFS-BF and EDF-BF.

FCFS-BF, EDF-BF, and Libra have constant performance with in-
creasing volatility (zero gradient) in Set B which is worse, compared
to having increasing performance with decreasing volatility (decreasing
gradient) in Set A. However, LibraRiskD is able to maintain increasing
performance with decreasing volatility (decreasing gradient) to record
the best performance in Set A and Set B. Although LibraRiskD also
has the worst volatility among all the policies, the maximum volatility
is only caused by a single point deviation and therefore only applies for
one or a few scenarios. It is clear that the main concentration of points
for LibraRiskD is close to the best ideal performance and volatility of 1
and 0 respectively. This thus shows that LibraRiskD is able to manage
the inaccuracy of runtime estimates a lot better than the other policies.

For the reliability objective in Set A (Figure 6e) and Set B (Figure 6f),
FCFS-BF and EDF-BF has the best ideal performance and volatility of
1 and 0 respectively due to their generous admission control examining
and accepting new jobs only after the previously accepted jobs are
completed. FirstReward has the worst performance in Set A and Set B
because it delay previously accepted jobs to accommodate new jobs if
the new jobs can still return higher utility after taken into consideration
the penalties incurred for delaying the previously accepted jobs. But,
FirstReward has slightly higher performance and volatility in Set B
than in Set A.

In Set A, Libra and LibraRiskD have a single point deviation due to
the scenario of inaccuracy of runtime estimates. In Set B, LibraRiskD
achieves higher performance and volatility than Libra, but the higher
volatility is only through a single point deviation. Moreover, LibraRiskD
has increasing performance with decreasing volatility (decreasing gradi-
ent), whereas Libra has constant performance with increasing volatility
(zero gradient). Therefore, LibraRiskD is able to handle the inaccuracy
of runtime estimates better than Libra.
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Figure 7. Bid-based model: Integrated risk analysis of three objectives
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Figure 8. Bid-based model: Integrated risk analysis of all four objectives

For the profitability objective in Set A (Figure 6g) and Set B
(Figure 6h), FirstReward has the worst performance, but the best
volatility. In addition, FirstReward has increasing performance with in-
creasing volatility (increasing gradient) which is worse than all the other
policies which have increasing performance with decreasing volatility
(decreasing gradient). This is due to FirstReward being more risk-
averse by accepting fewer jobs and not supporting backfilling. All the
other policies also have similar volatility. EDF-BF and FCFS-BF have
the best performance, followed by Libra and LibraRiskD, but in Set B,
LibraRiskD has a marginally higher performance than Libra.

Figure 7 shows the integrated risk analysis of three objectives in Set
A (accurate runtime estimates) and Set B (actual runtime estimates
from the trace) for the bid-based model. For the four possible combina-
tions of objectives in Set A (Figure 7a, 7c, 7e, and 7g), LibraRiskD has
similar performance and volatility as Libra. For the three combinations
of objectives that include the SLA objective in Set B (Figure 7b, 7f,
and 7h), LibraRiskD has considerably better performance, but slightly
worse volatility than Libra. This reflects that LibraRiskD is able to
perform better than Libra through the SLA objective when the runtime
estimates are inaccurate.

FirstReward has the worst performance, but the best volatility for
the four possible combinations of objectives in Set A and Set B. For
the combinations of objectives without wait (Figure 7a and 7b) and
SLA (Figure 7c and 7d) objectives, the difference in performance be-
tween FirstReward and the other policies is much greater, as compared
to the combinations of objectives without reliability (Figure 7e and
7f) and profitability (Figure 7g and 7h) objectives. This means that
FirstReward performs worse than the other policies due to wait and
SLA objectives.
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Figure 8 shows the integrated risk analysis of all four objectives in
Set A (accurate runtime estimates) and Set B (actual runtime esti-
mates from the trace) for the bid-based model. In Set A (Figure 8a),
Libra and LibraRiskD have the same best performance which is higher
than FCFS-BF, EDF-BF, and FirstReward. They also have slightly
worse volatility than FirstReward which has the best volatility. But,
Libra and LibraRiskD are better than FirstReward since the points
of Libra and LibraRiskD are concentrated around the best ideal per-
formance and volatility of 1 and 0 respectively, while the points of
FirstReward are evenly spread. In addition, Libra and LibraRiskD have
increasing performance with decreasing volatility (decreasing gradi-
ent), whereas FirstReward has increasing performance with increasing
volatility (increasing gradient).

However, in Set B (Figure 8b), Libra has worse performance than
FCFS-BF and EDF-BF, as compared to LibraRiskD which is still able
to maintain the best performance. Libra is thus greatly affected by the
inaccuracy of runtime estimates, while LibraRiskD is able to handle the
inaccuracy of runtime estimates. LibraRiskD also has more points closer
to the best ideal performance and volatility of 1 and 0 respectively than
the other policies.

7. Conclusion

This paper describes four essential objectives that need to be considered
by a commercial computing service in order to realize utility computing:
(i) manage wait time for SLA acceptance, (ii) meet SLA requests, (iii)
ensure reliability of accepted SLA, and (iv) attain profitability. Two
evaluation methods called separate and integrated risk analysis are then
proposed to examine whether resource management policies are able to
achieve the objectives.

Simulation results have shown that both separate and integrated
risk analysis enables the detailed study of various policies with respect
to the achievement of a single objective and a combination of objectives
respectively. In particular, an objective that is not achieved can severely
impact on the overall achievement of other objectives. It is thus essen-
tial to examine the achievement of all key objectives together, rather
than each standalone objective to correctly identify the best policy that
can meet all the objectives. As such, the following summary about
the various policies focuses on the achievement of all four objectives
together (i.e. integrated risk analysis of all four objectives). Simulation
results also reveal that the inaccuracy of actual runtime estimates from
the trace can adversely affect the achievement of objectives by non-
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preemptive policies. In the SDSC SP2 trace used in the simulation, only
8% of the runtime estimates are under estimates, while the remaining
92% are over estimates.

For the commodity market model, Libra+$ is the best policy when
runtime estimates are assumed to be accurate. Libra+$ returns sig-
nificantly higher utility for the commercial computing service even
though fewer jobs are accepted by increasing its pricing as workload
increases. But, Libra+$ performs worse than FCFS-BF, SJF-BF, and
EDF-BF when the actual runtime estimates from the trace is highly
inaccurate. For the bid-based model, LibraRiskD is the best policy as it
can achieve the best performance even when the runtime estimates from
the trace are inaccurate. This is because LibraRiskD not only accepts
more jobs given that runtime estimates are often over estimated, but
also consider the risk of deadline delay for runtime estimates that are
under estimated. Thus, Libra+$ and LibraRiskD are shown to be more
effective than Libra for the commodity market model and bid-based
model respectively.

FCFS-BF, SJF-BF, and EDF-BF are also less affected by the in-
accuracy of runtime estimates as they keep submitted jobs in queues
and accept them only prior to execution. Another advantage of this
approach is the better selection choice from more jobs in the queue.
However, the tradeoff is the longer wait time for SLA acceptance of
jobs that lowers the performance of the wait objective. There is also
minimal impact on FirstReward since it is already more risk-averse
when considering unbounded penalty and thus accepts fewer jobs to
reduce the possibility of incurring penalty. But, FirstReward has the
worst performance if the runtime estimates are accurate.
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