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Abstract

Dedicated computing clusters are typically sized based
on an expected average workload over a period of years,
rather than on peak workloads, which might exist for rel-
atively short times of weeks or months. Recent work has
proposed temporarily adding capacity to dedicated clusters
during peak periods, by purchasing additional resources
from Infrastructure as a Service (IaaS) providers such as
Amazon’s EC2. In this paper, we consider the economics
of purchasing such resources by taking advantage of new
opportunities offered for renting virtual infrastructure such
as the spot pricing model introduced by Amazon. Further-
more, we define different provisioning policies and investi-
gate the use of spot instances compared to normal instances
in terms of cost savings and total breach time of tasks in the
queue.

1 Introduction

Many organizations rely on dedicated clusters for run-
ning computing applications. Users submit applications as
Bags-of-Tasks to a scheduler, which then executes those
tasks as independent processes. A typical cluster purchase
is based on expected usage and funding. The size of the
cluster and therefore the number of available resources is
static, and cannot increase dynamically. It is common to
have periods when the demand on the cluster exceed ca-
pacity but these peaks do not justify the purchase of new
resources to increase the throughput. Nonetheless, over
shorter time periods the increased load can be very heavy,
and making the existing IT infrastructure inadequate to pro-
vide a reasonable service. In these cases, the ability of tem-
porarily extending the capacity of the cluster by renting re-
sources from an external provider can be a viable proposi-
tion. Such an opportunity is offered by Cloud Computing

[1][4], and more precisely Infrastructure as a Service (IaaS)
providers, which, by leveraging virtual machine technology,
deliver IT infrastructure on demand on a pay per use ba-
sis. Organizations can then integrate external compute re-
sources into their existing systems. However, since the use
of resources from Cloud providers is charged as a utility, a
careful investigation on how and when to leverage them is
necessary.

In this work we focus on temporarily extending a local
cluster through the use of resources leased from an IaaS
provider to specifically allow a statically sized system to
cope with an increased load. We consider this from the
point of view of the cluster operator, who wishes to pro-
vide a generally reasonable level of service in terms of the
amount of time tasks spend in the queue while also aim-
ing to minimize expenditure. For this purpose we present
two scheduling policies controlling the provisioning of vir-
tual resources and their release that dynamically react to the
changes in the task queue. Further policies are presented
to make use of Amazon’s recently introduced variable Spot
Pricing1 to reduce spending. As such the scope of this paper
is based on how to best utilise actual commercial services
available today rather than proposing new mechanisms.

The main contributions of this work are: (1) a system for
dynamically growing the number of resources to handle de-
mand using policies that minimize cost through spot market
resources and (2) the evaluation of the approach using real
trace data for both the workload and spot market.

The remainder of this paper is organized as follows. In
Section 2 we provide background on Cloud computing and
in Section 3 describe the policies used. Section 4 presents
the experimental setup and metrics for the reported results
in Section 5. Conclusions are presented in Section 6.

1http://aws.amazon.com/ec2/spot-instances/
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2 Background and Related Work

Previous work has shown how commercial providers can
be used for scientific applications. Deelman et al. [6] eval-
uated the cost of using Amazon EC2 and S3 services to
serve the resource requirements of a scientific application.
Palankar et al.[9] highlighted that users can benefit from
mixing Cloud and Grid infrastructure by performing costly
data operations on grid resources while utilizing the data
availability by the Cloud.

Our work is based on a similar previous work [5] that
evaluates different strategies for extending the capacity of
local clusters with commercial providers. These strategies
aim to schedule reservations for resource requests. Here, we
consider tasks that requires a single resource to be executed.

Several load sharing mechanisms have been investigated
in the distributed systems realm. Iosup et al. [7] proposed
a matchmaking mechanism for enabling resource sharing
across computational Grids. Wang and Morris [12] investi-
gated different strategies for load sharing across computers
in a local area network. Surana et al. [10] addressed the
load balancing in DHT-based P2P networks. Balazinska et
al. [2] proposed a mechanism for migrating stream process-
ing operators in a federated system.

Market-based resource allocation mechanisms for large-
scale distributed systems have been investigated [13][3]. In
this work, we do not explore a market-based mechanism as
we rely on utilizing resources from a Cloud provider that
has cost structures in place. However we do make use of
the market driven Spot Price of resources, but instead use
actual price data rather than a hypothetical market.

2.1 Amazon EC2 Operation Model

Amazon’s Elastic Compute Cloud (EC2)2 allows users to
deploy virtual machines on Amazon’s infrastructure, which
is composed of several data centers located around the
world. When requesting a normal instance, billing is in one
hour blocks and any partially used block will incur the same
charge as a full block. Aside from failures in Amazon’s sys-
tems an instance will keep running until it is explicitly ter-
minated by the user. In December 2009 Amazon introduced
Spot Instances, which are generally available at a significant
discount. When requesting to use Spot Instances the user
must provide a bid, which is the maximum price that the
user is willing to pay per hour. If the spot price goes above
the user’s bid the spot instances will be terminated without
warning. The spot price is controlled by Amazon.

The cost of a spot instance is also calculated based
on one hour time blocks. However since the Spot Price
varies, the hourly unit price is the Spot Price at the start
of each hour. For example a spot instance is requested

2http://aws.amazon.com/ec2/

when the Spot Price is USD$0.03. The user will be charged
USD$0.03 for the first one hour block; 30 minutes later the
price changes to USD$0.05 but the user is unaffected until
the second one hour block, which will then cost USD$0.05.

As with regular instances, if the user terminates the in-
stance any partially used time blocks will be charged as a
full block. However if Amazon terminates an instance due
to a rise in the spot price no charges will be incurred for the
partial time block. The user only pays for completed one
hour time blocks if Amazon terminates the instance.

3 Resource Provisioning Policies

3.1 Scenario

In this paper we are considering the scenario where a lo-
cal cluster is at times overloaded, and, in an effort to main-
tain reasonable task queue times, additional resources are
provisioned from an IaaS provider. What it means for a task
queue time to be ‘reasonable’ will depend on the individual
circumstances, however for this work we consider it to be
relative to the execution time of the task itself. As an accu-
rate execution time is not known when the task is queued,
the time block requested by the user is used instead. So for
a task to spend thirty minutes in the queue may be consid-
ered reasonable if it could run for up to an hour, however
that queue time is not reasonable for another task for which
only twenty minutes were requested.

As we are looking at executing tasks on external re-
sources acquired from an IaaS provider, the workload is re-
stricted to only Bag-of-Task applications. Such tasks are
self-contained units of work and do not rely on communi-
cating directly with other executing tasks for synchroniza-
tion. Hence they are better suited to be executed in an
IaaS environment where the networking between the nodes
is generally not as capable as that in a dedicated scientific
cluster.

Provisioning policies control the acquisition and release
of external cloud resources. In the case of peak demands,
new resources can be provisioned to address the current
need, but then used only for a fraction of the block for which
they will be billed. Terminating these resources just after
their usage could potentially lead to a waste of money; it
makes sense that they are reused in the short term before the
time block expires. In order to accomplish this, we intro-
duced a resource pool that keeps resources active and ready
to be used until the time block expires.

Figure 1 describes the interaction between the schedul-
ing algorithm, the provisioning policy, and the resource
pool. Arriving tasks are placed in a queue from which they
are taken and assigned to a free resource. A set of different
events such as the arrival of a new task, its completion, or
a timer can trigger the provisioning policy that will decide
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Figure 1. The task scheduling and resource
provisioning scenario.

whether to request additional resources from the pool or re-
lease them. The pool will service these requests, firstly with
already active resources, and if needed by provisioning new
ones from the external provider.

The information about tasks, which is available to the
provisioning algorithm is limited to the wall-clock time du-
ration requested by the user for the execution of the task. As
this user provided value is an upper bound on the executions
time and generally significantly overestimate the actual ex-
ecution time, we use a Workload Multiplier. This parameter
is used to scale down the requested execution time, which
is then used as the Expected Run Time of the task.

The requested time is also used to derive an ‘acceptable’
maximum time for the task to spend in the queue, which is
given by the Target Ratio between the requested time and
the Maximum Queue Time, (Equation 1). For very small
tasks the Maximum Queue Time could become correspond-
ingly very short, hence a lower bound of five minutes is
applied to the Maximum Queue Time. The time by which a
task must be assigned as not to breach its Maximum Queue
Time will be is its deadline.

MaxQueT ime = RequestedT ime× TargetRatio (1)

Even though Cloud computing claims to provide vast scal-
ability and potential for limitless growth, in reality limita-
tions do apply. For example, Amazon EC2 initially limits
each account to 20 instances in each region 3. Hence we
also impose a limit on the number of external resources that
can be used at any one time.

Below are the descriptions of each of the algorithms
used, Table 1 also includes an overview of the algorithms

3http://aws.amazon.com/ec2/faqs/

and their of behaviour.

3.2 Base Provisioning Algorithm

This algorithm forms the basis of all the approaches ex-
plored in this paper. It provides the basic mechanics for
requesting and releasing additional resources. At its core
is a simple heuristic for predicting breaches of the Maxi-
mum Queue Time. This heuristic is used both when tasks
are added to the queue and when a provisioned resource be-
comes free. The fundamental approach of the heuristic is
to use the Expected Run Time of each task to predict when
resources would become available for the next task in the
queue. The heuristic first builds an array with the time each
resource is expected to become available based on the Ex-
pected Run Time of the task currently executing on each re-
source. Resources that have been requested but have not yet
come online are also included in the array and considered to
be already available. Once the array is populated the heuris-
tic iterates through the queue of tasks keeping track of when
each resource is expected to be available again as the tasks
are assigned to the next available resource. When the pre-
dicted assignment time of a task would breach its Maximum
Queue Time the heuristic stops and indicates that a breach
was detected.

When a task arrives and no resources are available it is
inserted into the queue of waiting tasks. The tasks in the
queue are sorted soonest deadline first. Once the new task
is queued the breach detection heuristic is executed to deter-
mine if breaches of the Maximum Queue Time are expected.
If the heuristic indicates that a breach will occur, one addi-
tional resource is requested unless the maximum number of
resources has been reached.

When a task completes on a provisioned resource the
breach detection heuristic is used to test if removing the
resource is expected to lead to breaches of the Maximum
Queue Time. If a breach is expected the resource remains in
use and the next task from the queue is assigned. If on the
other hand, no breach is predicted then the resource could
be released back to the pool. However, before releasing the
resource the task queue is searched for the task that would
best make use of the remaining time block of the resource
by looking at the requested time of the task. The best fit task
is removed from the queue and assigned to the resource.

3.3 Base Hard

This is a variation on the Base algorithm, it not only
relies on attempting to predict breaches of the Maximum
Queue Time to trigger a request for additional resources,
but it also regularly checks the tasks in the queue if they
are about to breach the Maximum Queue Time. The checks
are performed at a one minute interval and each task that is
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Algorithm Breach Prediction Regular Checking Use Spot Resources
Base Yes No No

Base Hard Yes Yes No
Spot Base Yes No Yes

Spot Base Hard Yes Yes Yes
Spot Aggressive Yes, Workload Multiplier 1

with spot resources.
No Yes

Spot OnlyHard Yes Only with spot resources Yes
Pure Spot Yes No Yes, no retail resources used

Table 1. Overview of algorithms

within four minutes of breaching its Maximum Queue Time
will trigger one additional resource to be requested. A four
minute threshold was chosen in this case due to the config-
uration of the simulation, in particular the time a resource
requires to boot. As described in section 4 when a resource
is requested it will take three minutes for the resource to
become available. Hence with a four minute threshold and
checks every one minute, it should be possible to request
a new resource to be available just in time to prevent any
Maximum Queue Time breaches.

3.4 Spot Instances Algorithms

Spot Base and Spot Hard: This is the simplest ap-
proach to attempt to make use of the discounts available via
spot instances. The general behaviours of the algorithms
remains the same, but if spot resources are available, that
is, the current Spot Price is below the configured maximum
then spot resources will be requested instead of normal re-
tail priced resources. In the event of the Spot Price rising
above the maximum bid price all spot resources will be ter-
minated by the IaaS provider as described above. If any
tasks were executing on these resources they will have to
be restarted on another resource and hence inserted in the
queue again. The action of inserting these tasks triggers the
same reaction as new tasks arriving and being inserted into
the queue. Hence it may result in retail resources being re-
quested as the Spot Price is now too high and only retail
resources are available.

Spot Aggressive: When spot resources are available this
algorithm uses a Workload Multiplier of 1. Meaning that
it is more aggressive at requesting resources when cheaper
spot resources are available.

Spot Only Hard: This algorithm also changes its be-
haviour depending on the availability of spot resources.
When the Spot Price is too high and above the configured
maximum bid price then this algorithm acts the same as the
Base algorithm. However when the Spot Price falls below
the maximum bid price, it begins to perform the regular
checks for imminent Max Queue Time breaches and hence

acts the same as the Base Hard algorithm but requesting
spot resources.

Pure Spot: This algorithm only uses spot resources,
hence when the Spot Price is above the configured maxi-
mum bid price no provisioning occurs. When the Spot Price
is low enough to permit the usage of spot resources then it
behaves like the Base algorithm. Whilst spot resources are
too expensive the algorithm keeps count of the number of
tasks that have arrived, such that when the Spot Price falls
and spot resources can be used the algorithm can run the
breach detection heuristic for each of these tasks that have
arrived.

4 Performance Analysis - Setup

In order to evaluate each policy we built a discrete-event
simulator and identified performance metrics that will drive
the discussion of the experimental results. The Simulator
is implemented to reflect the behaviour of Amazon EC2. It
was configured with a resource ‘boot’ time of three min-
utes and to allow a maximum of 200 external resources to
be used at any one time. The default limit4 Amazon im-
poses on spot instances is 200 although in our simulation
this limit is applied to both regular and spot resources. The
local cluster was set to contain 10 resources. With the work-
load used this averages to 9 hours of computation time per
day, which we considered a reasonable level of load on the
system. Hence, the total number of resources in use could
grow from 10 to 210, giving over a 20 times increase. For
the simulation all resources were considered to have the
same performance.

The main values used for evaluating the performance
of the algorithms are the cost of renting the additional
resources and the sum of the time tasks have spent in
the queue beyond their Maximum Queue Time, which we
termed the Total Breach Time. The average time all tasks
have spent in the queue is also used at times to give an in-
dication of the overall impact some algorithms may have

4http://aws.amazon.com/ec2/faqs/
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Figure 2. Spot Price data used for simulation

beyond just meeting deadlines.
To calculate a cost for the use of cloud resources we use

a High-CPU Medium EC2 Instance as a reference point.
We chose this instance type as it provides the best value in
terms of the cost per EC2 compute unit and as such should
be well suited for CPU intensive scientific applications. The
true cost of using cloud resources includes other costs such
as network activity both at the IaaS provider’s and at the lo-
cal end as well as data storage in the cloud. We have not at-
tempted to establish these costs as they are dependent on the
individual case. Hence, the cost for using cloud resources
in this work is solely based on the amount of billable time.

4.1 Spot Price Trace

The trace data we are using for the Spot Prices comes
from Amazon EC2 Spot Prices. The data was obtained from
the published web services API for the Spot Price history.
Figure 2 gives the full Spot Price history that is available
for the High CPU Medium instance type. This spot price
history is representative of Linux instances types. The fig-
ure has a point every time a new price was set. The top
horizontal line in this graphs is drawn at the retail price of
USD$0.17.

From this graph it is apparent that the early spot prices,
prior to mid-January 2010 do not seem to be completely in
line with the later pricing pattern. The gap in the graph over
the Christmas period indicates that the Spot Price did not
change during that time. Potentially the lack of price fluc-
tuation over this period is the result of a lack in demand as
the service had only been introduced earlier in the month. It
is also clear that from mid January onwards the vast major-
ity of price fluctuations are confined to a relatively narrow
band between 30% and 40% of the retail price. It should
however be noted that spot prices have reached the retail

price in several occasions. Hence, placing a bid using the
retail price there is not guarantee that a spot price will not be
terminated. However, bidding above the band of spot prices
will dramatically reduce the chance of a instance being ter-
minated.

The trace data used for the simulations is that of the High
CPU Medium instance type. The trace is trimmed to be-
gin on Monday the 18th of January 2010 (vertical line in
Figure Figure 2) to avoid the inactivity over the Christmas
period. The top horizontal line in this graph is the retail
price at USD$0.17, the lines below are the price points used
during the simulation. They are the Low level located in
the band of price fluctuations at USD$0.06; immediately
above the band is the High level at USD$0.065 but still be-
low some of the spot price points; and finally, the Top level
is at USD$0.13 which is greater than all but a single spot
price point in the trace. The Low level is set roughly in the
middle of the band of price fluctuations, such that most in-
stances of a new Spot Price being set will cross this thresh-
old. On average a new Spot Price is set approximately every
three hours. As the period of usable spot price data is lim-
ited and shorter than the workload trace, the spot price trace
is looped by the simulator.

4.2 Workload Trace Data

The task workload trace comes from the DAS-2 [11] sys-
tem and is available from the Grid Workload Archive [8].
The DAS-2 system consists of five clusters totalling 200
nodes with dual 1GHz Pentium III processors. The trace
covers the time period from the 22 February 2005 to 13 De-
cember 2006. This trace was chosen as it explicitly identi-
fies Bag-of-Task (BoT) applications, which is the case we
are considering and allows us to remove other applications
from the trace.

In cases where the Requested Time is not specified, the
actual run time is used. This does not follow the pattern
of the requested time being significantly larger than the ac-
tual run time. However this only occurs in 0.14% of the
tasks driving the simulation, and as such is not expected to
have a significant impact on the results. In our scenario we
also consider the Requested Time to be a hard upper bound
on the actual runtime of a task and that the middleware en-
forces this limitation. Hence, the trace data is modified to
enforce this limitation by setting the run time of tasks to the
requested time as if the task were terminated due to reach-
ing the limit of its requested run time. Almost 6% of tasks
have their run time modified in this manner, however on
average the runtime is only reduced by less than 1.5 min-
utes. The trace data used to drive the simulation contains
366 985 tasks with an average execution time of 9.7 min-
utes per task.

Figure 3 presents a frequency distribution of the per-
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Figure 3. Frequency distribution of the per-
centage of the requested time that is actually
used to execute the tasks.

centage of the requested time that is used to execute each
task. The tasks which would otherwise have exceeded the
requested time is evident by the spike at 100%. Also 90% of
tasks use 67% or less of their requested time to execute and
27.5% of tasks use 1% or less of the requested time. 87.8%5

of tasks request around 15 minutes of execution time. The
large number of tasks using less than one percent of their
requested time can be attributed to buggy scripts which ter-
minate after only a few seconds. However, we do not feel
that this characteristic invalidates the use of this workload
as it is real data that the system we are examining should
be able to handle. Also having many tasks that have such
a short run time does not aid the system in predicting when
deadlines might be breached.

5 Performance Analysis - Results

First we consider at the characteristics of the Base and
Base Hard algorithms and how they are affected by the sim-
ulation parameters. We then investigate the available sav-
ings, which are possible through the use of spot instances.

5.1 Characteristics of the Base Algorithm

According to Equation 1, having a smaller Target Ra-
tio means that the deadline is tighter because the Maximum
Queue Time is smaller. In Figures 4 and 5 a number of Tar-
get Ratios are compared.

Looking at the graphs for the average queue time 4(b)
and 5(b) we see that, as one would expect, the average queue

572.9% requested 15minutes and 14.8% requested 16minutes.

times are lower when the Target Ratio is smaller and the
deadline becomes tighter. Also as the Workload Multiplier
increases more and more of the lines converge until at Work-
load Multiplier 1, all but one Target Ratio result in a similar
average queue time. This indicates that for each Target Ra-
tio there is a Workload Multiplier above which the tightness
of the deadline is no longer a major influence on the overall
queue times. In the graphs of the cost, 4(a) and 5(a), this
point is even more apparent as for most Target Ratios there
is a big step from one Workload Multiplier to the next.

It is interesting to note that this point occurs immediately
after the Workload Multiplier reached the same value as the
Target Ratio. This is the result of large groups of tasks ar-
riving at the same time in the queue with the same Request
Times and hence having the same deadline by which they
should be assigned to a resource. If the Workload Multi-
plier is the same or less than the Target Ratio then at least
one task can finish on each resource and the next task as-
signed before the deadline expires. Hence, up to that point
in this situation at most half as many resources are needed
as tasks in the queue to prevent the predicted breaches of
the Max Queue Time. When the Workload Multiplier is
greater than the Target Ratio then the expected runtime is
also greater than the Max Queue Time. To prevent all pre-
dicted breaches as many resources are needed as there are
tasks in the queue, resulting in many more resources being
requested and leading to the jump in cost. Therefore, the al-
gorithm’s behaviour has become much more aggressive in
requesting resources.

Due to the increased aggressiveness of the algorithms
when the Workload Multiplier is greater than the Target
Ratio the number of resources that are requested becomes
more heavily influenced by the cap on the number of ex-
ternal resources that can be used at any given time. Hence
the Cost and Average Queue Time of all the Target Ratios
becomes similar once this threshold is crossed. The fact
that this effect is so apparent in the Cost graphs (4(a) and
5(a)) highlights the burstful nature of this workload, which
is inline with expectations for BoT applications.

In Graph 4(c), one would expect that when the deadlines
are more relaxed tasks would end up spending less time in
breach. This is the case for higher Target Ratios, see the
lines for ratios 0.7 and greater which are mostly in order.
However with smaller Workload Multipliers and Target Ra-
tios this order is inverted at times. For example having a
Target Ratio of 0.1 which is the tightest deadline we tri-
alled, results in a significantly smaller Total Breach Time
than even a Target Ratio of 0.5 when the Workload Multi-
plier is between 0.2 and 0.4. This can also be attributed to
the chance in aggressiveness when the Workload Multiplier
becomes bigger than the Target Ratio, as having a Target
Ratio of 0.1 means that the algorithm has already become
more aggressive while with the higher Target Ratios are not
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Figure 4. Base algorithm with different Target Ratios

as aggressive with low Workload Multipliers.
The Base Hard algorithm on the other hand does not rely

solely on predicting all breaches; instead it can react when
a breach is about to occur. Thus the Total Breach Times
in graph 5(c) are much flatter. As with the Base algorithm
at Workload Multiplier 1, the Total Breach Time separates
out into distinct levels, only slightly affected by the Work-
load Multiplier. This is the result of the cap on the number
of concurrent resources that can be in use at any one time.
Without this cap, the Base Hard algorithm would be able to
request enough resources to prevent all breaches.

5.2 Savings With Spot Resources

To explore the possible savings, which can result from
using spot resources we considered three maximum bids as
described in section 4.1. Furthermore, a Target Ratio of 0.5
will be used for the rest of this analysis as with this ratio
the algorithms change to become more aggressive with a
Workload Multiplier of 0.6 so the behaviour before and after
the change should be evident.

The simplest approach to using spot resources is to re-
quest them when available without changing the rest of the
algorithm. Figure 6 shows the results of using spot re-
sources. The greatest saving can be made when the bid price
is the highest, as a high bid price permits greater use of spot
resources which cost less per hour than the retail price. At
the Top bid price no retail resources were used and the High
bid price, which sits just above the day-to-day spot price
fluctuations, resulted in almost the same costs. At the Low
bid price the system is forced to pay retail price for many
resources. The performance in terms of the Total Breach
Time was essentially unaffected by the use of spot resources
at any of the three bid prices. Although we expected the in-
creased volatility at the Low bid price to have an effect, at
most 33 out of the 366,739 tasks had to be restarted, which
can be attributed to the characteristics of the workload.

The Spot Aggressive and Spot Only Hard algorithms
change their behaviour when spot resources are available
to request more resources to improve the queue time while
only spending a small extra amount. At the Low bid price
improvement in the Total Breach Time is apparent (Graph
6(a)) with minor additional cost seen in Graph 6(b). When
using the High bid price the Spot Aggressive and Spot Only
Hard algorithms behave much more like the Base Hard al-
gorithm, performing slightly worse than it however. This
is because at the High bid price spot resources are still un-
available at times.

Finally we consider the Pure Spot algorithm, which ex-
clusively uses spot resources when available. With a Low bit
price the performance is heavily influenced by the restricted
availability of additional resources(see Table 2). When a
higher bid price is used these restrictions are reduced and
the performance of this algorithm begins to resemble that
of the Spot Base algorithm.

5.3 Overall Comparison and Observations

From our analyses so far the following overall observa-
tions can be made about using spot resources:

• That there exists a band in which the Spot Price fluc-
tuate most of the time. Hence, even small changes in
the bid price to be above this band can have a dramatic
impact. In our case a change of USD$0.005 from the
Low to High bid price level reduced the costs by at lead
20%.

• A larger bid price will lower cost, as more work is
performed in spot resources rather than on regular full
price resources.

For a final concrete comparison a summary of results is
presented in Table 2. We choose to only include results with
a Top bid price of USD$0.13 as they produce the lowest
cost, except for the Pure Spot policy where the Low bid
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Figure 5. Base Hard algorithm with different Target Ratios
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Figure 6. Algorithms using spot resources with a Target Ratio of 0.5.

price has the lowest cost. Also the Spot Aggressive and the
Spot Only Hard policies were omitted from the table as at
the Top bid price they produce the same results as policies
presented in the table. The Target Ratio used in the table
is again 0.5 and results for both a low and a high Workload
Multiplier are included.

First of all comparing the Local Only case of not using
any external resources to the performance of the Base Hard
policy at either Workload Multiplier highlights the substan-
tial improvements that are possible. The Total Breach Time
is reduced to 0.12% of the Local Only value, a change of
three orders of magnitude. The Average Queue Time is
taken from over 13 hours down to under 10 minutes and un-
der three minutes with a Workload Multiplier of 1.0. This is
a reduction of two orders of magnitude.

The amount of money that needs to be spent hiring re-
sources to gain these improvements using the regular fixed
pricing model is $8 991.13 or $11 314.69 with a large Work-
load Multiplier. Spread over the 21 months of the workload
trace this is around $500 per month. When the flexible Spot
Pricing model is used these costs can be lowered to 36%
of the retail costs while maintaining the same performance.

On a per month basis this is under the $200 mark. Although
it is possible to lower these costs further by using the Pure
Spot approach with a Low bid price, the performance, both
in terms of the Total Breach Time and the Average Queue
Time, deteriorates so much as not to be worthwhile.

The best approach to take based on our observations is
to use a Spot Base Hard policy with a very high bid price
(close to retail) and choose a Target Ratio based on the
user’s expectations with a Workload Multiplier adjusted de-
pending on the importance of the average queue time.

6 Conclusion and Future Directions

In this paper we have discussed some resource provision-
ing policies that can be used to extend the capacity of a local
cluster by leveraging external resource providers, as well as
reduce the cost by using the Spot Market.

We introduced two policies that use the amount of re-
quested time for each task to determine the load on the
system and when additional resources should be used. We
analysed their behaviour from the perspective of the Work-
load Multiplier, which is used to estimate the actual run
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Bid Workload Multiplier Total Breach Time (H) Avg. Queue Time (min) Cost (USD)
Only Local N/A N/A 4 936 934.16 827.44 0.0

Pure Spot Resources 0.06(L) 0.2 1 239 974.83 213.92 1 365.08
Pure Spot Resources 0.06(L) 1.0 1 218 119.96 207.13 1 881.93

Base N/A 0.2 11 342.33 8.52 7 696.92
Base Hard N/A 0.2 5 843.20 6.70 8 991.13
Spot Base 0.13(T) 0.2 11 342.33 8.52 2 778.77

Spot Base Hard 0.13(T) 0.2 5 843.20 6.70 3 252.81
Base N/A 1.0 5 863.08 2.28 11 264.03

Base Hard N/A 1.0 5 862.98 2.27 11 314.69
Spot Base 0.13(T) 1.0 5 863.08 2.28 4 078.03

Spot Base Hard 0.13(T) 1.0 5 862.98 2.27 4,095.86

Table 2. Summary table of select results with a Target Ratio of 0.5

time from the requested time of each task as well as the
Target Ratio, which determines the ‘reasonable’ time that
tasks can spend in the queue. The experiments using the
DAS-2 workload and a small local cluster show that the To-
tal Breach Time can be reduced by three orders of magni-
tude and the Average Queue Time by two orders of magni-
tude while spending less that USD$10 000 over the close to
two years that are covered by the trace. Next we explored
the savings possible by using spot resources (in conjunction
with normal resources) and the impact of choosing a maxi-
mum bid price. Concluding that the best saving is achieved
when the bid price is set very high, close to the retail price,
such that spot instances have a very high likelihood of being
used. In that case it is possible to save more than half of the
the previous cost while maintaining the same performance
characteristics.

For future work we intend to extend the simulations to
include other workloads with longer running tasks and in-
clude the network overheads involved when assigning a task
to a remote resource. The policies will be extended to be
aware of applications made up of many individual tasks.
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