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Abstract—Cloud computing paradigm allows on-demand 
access to computing and storages services over the Internet. To 
solve the complexity of application deployment in Cloud 
infrastructure, virtual appliances, pre-configured, ready-to-
run applications are emerging as a breakthrough technology. 
However, an automated approach for deploying network of 
appliances is required to guarantee minimum deployment cost, 
low latency, and high reliability. In this paper, we propose and 
compare two different deployment approaches: Forward-
checking-based backtracking (FCBB) and genetic-based. They 
take into account Quality of Service (QoS) criteria such as 
reliability, data communication cost, and latency between 
multiple Clouds to choose the most appropriate combination of 
virtual machines and appliances. We evaluate our approach 
using a real case study and different request types.  
Experimental results show both algorithms reach near optimal 
solution. Further, we investigate effects of factors such as 
latency requirements, and data communication between 
appliances on the performance of the algorithms and 
placement of appliances across multiple Clouds.   

Keywords- Cloud computing; Virtual appliance; Quality of 
service; Service-Level Agreements (SLA);  

I. INTRODUCTION 
Cloud computing is “a large-scale distributed computing 

paradigm that is driven by economies of scale, in which a 
pool of abstracted virtualized, dynamically-scalable, 
managed computing power, storage, platforms, and services 
are delivered on-demand to external customers over the 
Internet” [2]. Clouds can be classified according to their 
service types and deployment models [3]. 

As noted by Ian Foster et al. [2], clusters, supercomputers, 
and partially grid relied on non-Service Oriented 
Architecture (SOA) application, while Cloud focuses on Web 
2.0 and SOA. Although Clouds adopted standard 
communication protocols such as HTTP, and SOAP, the 
integration and interoperability of all services and finally 
service deployment remain as major challenges. To 
overcome deployment problems such as root privilege 
requirements and library dependencies, virtual appliance 
technology is adopted as a major Cloud component [2]. 
Virtual appliances are a set of virtual images including 
optimized operating systems, pre-built, and pre-configured, 
ready-to-run applications which proved to be a better service 
deployment solution [5].  

Cloud deployment includes two main phases: discovery 
and selection. In the discovery phase, all virtual units and 
appliances that satisfy users’ goals and Quality of Service 

(QoS) requirements are retrieved. Then, in the selection 
phase, all the combinations of virtual units and appliances 
are evaluated and ranked based on user preferences and the 
top combination in the ranked list are returned as the best 
composition. A framework for service discovery and 
deployment in Cloud was introduced in our previous work 
[9]. In this paper, we focus on QoS-based virtual unit and 
appliance selection. 

 
Figure 1.  Network of Virtual Appliances Deployment in Multiple Clouds 

Environment 

We investigate a solution considering user’s objective and 
constraints that offers a selection strategy for deploying a 
group of connected appliances (as shown in Figure 1) in an 
environment where multiple Clouds are offering their 
services in the form of virtual units and appliances. In the 
selection problem, we have users’ requests with different 
latency, reliability and budget constraints, and the objective 
of minimizing the deployment cost. Moreover, we have 
various combinations of appliances and virtual units in the 
Cloud market. The problem is to find a composition that 
adheres to the user constraints and minimizes the cost of 
deployment. The deployment problem maps to multi-
dimensional knapsack problem due to multiple QoS 
constraints. The Multidimensional Knapsack problem is 
classified as NP-hard optimization problem [11]. It consists 
of selecting a subset of alternatives in a way that the total 
profit of the selected alternatives is maximized while a set of 
knapsack constraints are satisfied.  

Since by migrating to Cloud, Cloud customers are moving 
their data and services out of their direct control, they are 
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typically concerned about the reliability of Cloud providers’ 
operations. However, this QoS dimension has not been 
investigated in Cloud provisioning studies [7, 8]. Moreover, 
since multiple providers are offering different appliances and 
virtual units with different pricing in the market, it is 
important to exploit the benefit of hosting appliances on 
multiple providers to reduce the cost and provide better QoS. 
However, this could be only possible if high throughput and 
low latency can be guaranteed among different selected 
Clouds. Therefore, the latency constraint between nodes has 
to be considered as another QoS criteria in the selection 
problem. This paper considers reliability and latency 
between virtual appliances as the main QoS criteria for 
designing service selection strategy. In our work, we 
carefully model the QoS criteria in the problem and then 
tackle it by two different approaches namely genetic-based 
and Forward-checking-based backtracking (FCBB) 
algorithm.  

Furthermore, the paper shows effects of data transfer rate 
between appliances on the performance of algorithms and 
compares effects of latency requirements and data transfer 
rates between appliances on their placement across multiple 
Clouds.  

The major contributions of this paper are: 1) modeling 
relevant QoS criteria, namely as latency, cost (data transfer 
cost, virtual unit, and appliance cost), and reliability for 
selection of the best virtual appliances and units in Cloud 
computing environment, 2) presenting and evaluating two 
different selection approaches to help users in deploying 
network of appliances on the multiple Clouds based on their 
QoS preferences. For that purpose various types of requests 
(with different network load between appliances) are 
generated, and data from 12 real Clouds was collected, and 
3) investigating effects of factors such as latency 
requirements, and data communication on the cost of 
appliance placement and the selection of providers. 

II. MOTIVATION SCENARIO AND CHALLENGES 
To study user requirements and concerns for deploying a 

network of appliances on Clouds, we give an example of a 
real world case study with known network traffics between 
appliances. A good example of network of virtual appliances 
(a set of appliances in the form of a connected graph which 
have data communication among them) is multi-tier 
applications supporting web-based services. Each tier has 
communication requirements as characterized in the research 
conducted by Diniz Ersoz et al. [1]. They considered a data 
center with 11 dedicated nodes of a 96-nodes Linux cluster 
and host an e-business web site encompassing 11 appliances: 
2 front-end Web-Servers (WS) in its web tier, 3 Databases 
(DB) in its database tier and 6 Application Servers (AS) in 
between. 

An administrator of the e-Business web site might be 
interested in migration of the appliances to the Cloud in 
order to save on upfront infrastructure and maintenance 
costs, as well as to gain the advantage of on-demand scaling. 
In addition, to allow disaster recovery and geography-
specific service offering, he prefers multiple Cloud 
deployment. For such deployment, he faces several 

challenges such as: 1) what is the best strategy for placing 
appliances across Cloud providers? Should they be placed 
based on the traffic they exchange, therefore placing those 
with higher connectivity closer to each other to decrease 
latency and data transfer cost?, 2) is it economical to do so? 
(how much is the Cloud deployment cost), 3) if appliances 
are placed across multiple providers, how the latency 
between different providers affects the web site 
performance?, and  4) how can the most reliable Cloud 
services be selected for the deployment?   

In this work, our proposed algorithms help to answer the 
above questions by selecting the most suitable virtual 
appliance and virtual unit services based on the application 
requirements. Our solution minimizes the cost of migration 
to Cloud while considering user’s concerns in regards to 
reliability and latency. In order to translate the user QoS 
requirements in terms of reliability, latency and 
communication costs, we have considered three metrics 
which are explained in the next section.  

III. QOS CRITERIA  
The three QoS criteria considered in the selection problem 

are reliability, cost, and latency.  

A. Reliability 

For measuring Cloud providers’ reliability we introduce 
SLA Confidence Level (SCL) which is a metric to measure 
how reliable are services of each provider based on the 
binding SLAs. SCL values are computed by a third party that 
is responsible for monitoring the SLA of provider based on 
the following equation: 

SCL=  where: =  

Where the  is SLA confidence level for QoS criteria j 
of a Cloud service;   is the importance of the criteria j for 
user; k is the number of monitored QoS criteria.   is a 
is monitored value of quality of service criteria j in the 
period of t. and  is promised value for the QoS criteria in 
the period of  t. 

We modeled “availability” for SCL generation, as current 
Cloud providers only include “availability” in their SLAs. 
For example, a provider with promised availability of 99% 
for 365 days and monitored availability of 98% for 365 days 
has a better SCL compared to a provider with same promised 
availability and 95% of monitored availability. The reliability 
in our work is considered as a user constraint for each Cloud 
service. 

B. Cost 

Cost is a non-functional requirement of a user who wants 
to deploy a network of appliances on Cloud. In our problem, 
minimization of deployment cost is considered as the 
objective of users. The deployment cost in our selection 
problem includes monetary cost of leasing virtual units as 
well as appliances and communication costs [20].  The 
communication monetary cost for connected virtual 
appliances depends on how much data they exchange and 
can be determined by the following factors: 1) One time 
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communication message size and 2) Communication rate 
(how often two appliances communicate), which can be 
calculated based on request inter-arrival rate. 

C. Latency 

Latency can have a significant impact on e-Business web 
sites performance and consequently on the end user 
experience. Therefore, we have considered it in the selection 
problem as one of the user’s constraints. It is assumed that 
customers have different constraints for the latency between 
appliances which have to be satisfied with the selection of 
proper Cloud providers.  

IV. ARCHITECTURE  
As illustrated in Figure 2, deployment process consists of 

following phases:  
 In phase � Service requestor specifies requirements for 

each vertex, connectivity, latency constraints between 
vertices, and hardware requirements like CPU, storage, 
and memory. 

 In phase � Software requirements used as an input for 
discovering the best suited appliances among various 
repositories of virtual appliance providers which named 
as virtual market place by VMware. Simultaneously 
Hardware requirement used by ontology-based 
matchmaker in discovery component [9] to search for the 
best available virtual units advertised. 

 Phase �  deals with building the Open Virtualization 
Format (OVF) package and its metadata based on 
discovered virtual appliances from external appliance 
providers. The OVF [33] is a hypervisor-neutral (the 
OVF doesn’t rely on the use of specific hypervisor or 
virtualization platform), and open specification for the 
packaging and distribution of virtual appliances 
composed of one or more VMs. 

 During phase � the selection component uses user 
preferences regarding latency, SCL and cost to select the 
best virtual appliance and virtual unit combination for the 
group of appliances connected together. Consequently, in 
this phase the selection component sends a query to the 
monitoring third party and acquires the associated SCL to 
each service provider. 

 Finally in phase � SLA will be negotiated and contract 
will be achieved between the SLA managers and selected 
virtual unit and appliance providers. Enforceable SLA 
will be signed by both parties and is kept in a repository 
and continuously monitored by the third party. 

V. PROBLEM FORMULATION 
The Cloud selection problem consists of finding the 

composition of appliances and virtual units for the customers 
that minimizes the deployment cost and adheres to the 
reliability and latency constraints. In this section the problem 
is formally defined. 
 

 
Figure 2.  Architecture of Appliance Deployment in                        

Multiple Cloud Environment 

 Provider model 
Let m be the total number of providers. Each provider is 

represented as  
Pk : ({a}, {vm },  Cdatain(Pk), Cdataout(Pk)); 

Where a, vm, Cdatain(Pk) and Cdataout(Pk) denotes 
appliance, virtual machine, Cost of internal data transfer and 
Cost of external data transfer respectively.  A virtual 
appliance a can be represented by a tuple of four elements: 
appliance type, cost, license type, and size. 

a: {ApplianceType; Cost; LicenseType; Size} 

A virtual machine vm can be formally described as a tuple 
with two elements as shown below. 

vm: {MachineT ype; Cost} 

 User request model 
The user request for deployment of his application can be 

translated into a connected graph G (V, E) where each vertex 
represents a server (virtual appliance running on a virtual 
unit). Server corresponding to a vertex v is represented as: 

 

Each edge indicates that vertex v and v’ are 
connected. The data transfer between these connected 
vertexes (i.e., one server to another) is given by D.   

The objective of user is to minimize the deployment cost 
of his whole application on multiple Cloud providers’ 
infrastructure, given a lease period of “T” (unit) and budget 
b. The users has constraint for reliability (SCLv) of the 
provider on which server should be hosted and also latency 
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constraint ((L(e{v,v’}) where v,v’ ) that represents 
maximum acceptable latency between servers. The cost of 
renting a server includes the cost of virtual unit and virtual 
appliance. Let appliance for Sv be rented from provider Pk 
and virtual unit from provider Pl.  The cost of server Sv as 
shown below is cost of appliance (  ) and virtual 
unit (  plus cost of transferring the appliance if the 
appliance and virtual unit providers are not same.  

 

Let Sv={ av,Pk , vmv,pl } and Sv’={ av’,Pk’ , vmv’,pl’ }  be two 
connected vertexes (servers) by edge  ; and Pk , 
Pl, Pk’ and Pl’ are the providers using whose resources 
Servers Sv and Sv’ are deployed. The data transfer cost 
between two servers is given by: 

 

Therefore, the total cost of hosting user’s application on 
the multiple clouds is given by: 

 

 Problem Formulation 
The objective of the user is to minimize the deployment 

cost of his whole application on multiple cloud infrastructure 
(Pk.0<k<m). Thus, the mathematical model is given by: 

  

 

 

Where, is the latency between Cloud 
infrastructures where server  and  are hosted, and 
SCL( ) is the reliability of the Cloud infrastructure where 
server  is hosted. 

VI. ALGORITHMS   
To tackle the mentioned problem, one may consider a 

greedy algorithm [8]. However, it cannot be directly adopted 
to solve the selection problem, as it is not capable of 
satisfying the budget constraint and latency constraints 
between vertices. Another approach which can be used to 
solve the problem is finding all possible compositions using 
exhaustive search, comparing their overall cost, and selecting 
the composition with the lowest cost that satisfies budget, 
reliability, and latency constraints. This approach can find 
the optimal solution; however, the computation cost of the 
algorithm is high due to NP hardness of the problem [8,18]. 
In order to deal with the aforementioned challenges in 
following we describe two selection algorithms: Forward-

checking-based backtracking (FCBB) and the genetic-based 
Cloud virtual appliance and unit selection. 

A. Forward-checking- based -backtracking (FCBB) 
In FCBB the process of searching providers begins from 

a start node (vertex)  Sv which has minimum deployment 
cost (including appliance and virtual unit cost) and for all its 
children there can be found at least one provider that satisfies 
all constraints(partial forward checking) [Algorithm FCBB1: 
lines 14-18].  The partial forward checking on the problem 
constraints is added to the algorithm to avoid back jumps in 
the circumstances where latency constraints of the users are 
comparatively tight.  

 
Then, Sv is added to the processed node list. After that, 

the algorithm processes all the children of Sv which are not 
processed, and for each child of Sv, providers are selected 
using the selection function [Algorithm FCBB lines:9-12] 
such that 1) latency and SCL constraints are satisfied with all 
the connected processed nodes (backward checking) , 2) they 
can pass forward checking and 3) they have minimum 
communication (to already processed nodes) and 
combination cost [Algorithm FCBB1: lines:20-23 ].   
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After selection of all the unprocessed children of the start 
node Sv, the similar search and selection process is done 
recursively for all the grand children of start node Sv  
[Algorithm 1 lines: 13-15]. If selection function does not find 
any set of providers, it moves back and replaces the parent 
node with the second best set of providers in Combination 
list (Backtrack) [Algorithm FCBB lines: 6 and 11]. 

B. Genetic- based Virtual Unit and Appliance Provider 
Selection  
Since genetic approaches have shown potential for 

solving optimization problems [13], this class of search 
strategies was utilized in our problem. The adoption of 
genetic-based approaches for the selection problem involves 
4 steps. 

The first step is to plan the chromosome, which consists 
of multiple genes. In our problem, each vertex in the graph 
of request is represented by a gene. The second step is to 
create the population, hence each gene represents a value 
which pointed to a combination of virtual unit and appliance 
service (which satisfies requirements of corresponding 
vertex) in a sorted (based on the combination cost) list. 
Implementation of fitness function is the third step. The 
fitness values are then used in a process of natural selection 
to choose which potential solutions will continue on to the 
next generation, and which will die out. The fitness function 
as shown in Equation (1) is equal to the total cost of the 
solution. However, if constraints are violated then the 
penalty function is applied. Designing penalty function for 
genetic-based approach is not a trivial task. Several 
techniques have been applied in our work until a proper 
penalty function was found that is capable of handling 
constraints in the problem. The penalty function is 
constructed as a function of the sum of number of violations 
for each constraint multiplied by constants as shown in 
Equation (2). In the penalty function, Age is the age of 
chromosome, ki is the constant which differs from a 
constraint to another constraint, NVi is number of cases that 
violate the constraints and NNVi is the number of cases that 
do not violate the constraints. In addition, to discard the 
infeasible solutions in early generations, infeasible solutions 
with lower age are penalized heavier. Finally, the last step is 
the evolution of the population based on the genetic operator. 
The genetic operator adopted for our work is Java Genetic 
Algorithm Package (JGAP) natural selector [14]. 

 

Where, =                      (2) 

VII. EXPERIMENTAL TEST BED MODELLING 
To evaluate the proposed algorithms and study placement 

of appliances, essential input data using real experiments was 
collected.  The collected data can be classified either in data 
for providers modeling, and data for user request modeling. 
Providers Modeling:  A set of 12 real Cloud providers are 
selected namely: Amazon, Zerigo, Softlayer, VMware, 
Bitnami, rpath, Turnkeylinux, Rackspace, GoGrid, 
ReliaCloud, Lindoe, and Prgmr. Their virtual units and 
appliances have been modeled in our system. In addition, 
latency data between Cloud providers and SCL for each of 
them have been measured. The following subsections 
describe the data collected in detail.  

1) Virtual Unit and Appliance Modeling: We built an 
aggregated repository of virtual appliance and virtual unit 
services based on the advertised services by Cloud providers. 
Services contain information regarding cost, virtual 
appliance size, and data communication cost inside and 
outside of Clouds. 

2) Latency and reliability (SCL) calculation: The 
latency data between Cloud providers has been collected 
over the past three months using the Cloud harmony [23] 
service. Data collection was conducted twice daily at random 
times.  Tests consist of pinging to determine latency. Table I 
shows mean latency between EC2 and 3 different virtual unit 
providers as a sample. Max, min and average of latency 
between providers are 58.94, 2.51 and 29.88 (ms) 
respectively. In addition, Panopta (a monitoring tool) is used 
to supply SCL input data, Table I demonstrates how a 
sample of SCL input data looks like for 3 Cloud Providers 
service uptime for the last 365 days. 
Generation of requests for experiments: The request 
generation involves three steps. Firstly, number of servers 
requested by the user and requirements of each server in 
terms of virtual unit and appliance types are determined. 
Next, connected vertices in request are identified. Finally, 
data transfer rates between connected appliances are 
identified. For experimental evaluation two classes of 
requests are used, i.e., a real case study and randomly 
generated requests. 

TABLE I.  LATENCY BETWEEN CLOUDS AND SCL INPUT DATA [23] 

Cloud A Cloud B Latency 
(ms) 

Cloud B 
Monitored 
Availability 

Cloud B  
Promised 

Availability  
Ec2 Rackspace 49.8 99.996% 100% 

Ec2 GoGrid 8.9 99.999% 100% 

Ec2 Lindoe  5.01 99.999% 100% 

TABLE II.   REQUEST TYPES 

Request 
Type 

Request 
Graph 
Density 

Request Inter-
Arrival Rate 

DB ↔ AS 

Request Inter-
Arrival Rate 

WS ↔ As 
Strongly 

Connected 0.85 Log-normal 
(1.4719, 2.2075) 

Weibull 
(0.70906 ,10.185) 

Moderately 
Connected 0.50 Log-normal 

(1.1695  1.9439) 
Weibull 

( 0.41371  1.1264) 

Poorly 
Connected 0.25 Log-normal 

(0.8912  1.6770) 
Weibull 

(0.24606  0.03548) 
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1) modeling user requests using a real case study 
For the real case study example, we use the three-tier 

data centre scenario presented by Ersoz et al. [1]. Required 
virtual unit and appliance type for each vertex is assigned 
based on the scenario. They implemented an e-Business web 
site that encompasses 11 appliances: 2 front-end web-servers 
(WS) in its web tier, 3 databases (DB) in its database tier and 
6 application servers (AS) in between. In their work, three-
tier data centre architecture was used to collect the network 
load between appliances. Each of the nodes have 4 GB of 
system memory, 64-bit AMD Opteron processors. Two 
different workloads, RUBiS [25] and SPECjApp-Server2004 
[16] are used by them. However, our focus is on the RUBiS 
which implements an e-Business web site. That web site 
includes 27 interactions which can be carried out from a 
client browser. Their analysis of experiments results has 
been represented by various distributions of request inter-
arrival times, and data size between tiers for 15 minutes runs 
of the RUBiS workload with 800, 1600, and 3200 clients 
(number of clients causes different request inter-arrival rates 
which is used to generate different requests types). This data 
which is shown in Table II is used to calculate the network 
traffic between connected appliances.   
2) modeling user  requests for extensive experiment study 

Three classes of user requests (network of appliances) 
namely strongly, moderately, and poorly connected are 
created as shown in Table II which differs from each other in 
communicated message sizes, message inter-arrival rates, 
and graph density (proportion of the number of edges in 
request graph to total possible number of edges) of the 
request graph. The reason for building 3 classes of requests 
is to study the effect of network traffic and request graph 
density on performance of selection algorithms. For each 
vertex, we randomly assign a required virtual unit and 
appliance type, and then we use random graph generation 
technique to identify which vertices are connected. All 
generated network of appliances are following the topology 
presented by Ersoz et al. [1]. Next, based on which types of 
appliances are connected to each other, data transfer rates are 
assigned to them according to Table II. For example if one 
appliance is a database and the other one is application server 
and the request is in category of strongly connected, then the 
request inter-arrival rate is Log-normal(1.4719, 2.2075). In 
addition, to investigate effects of message size on the 
performance of algorithms, two classes of requests with 
different message sizes are created using workload ‘a’ [1] (e-
Business application with small message size) and ‘b’ [24] 
(98 World cup with large message size). 

VIII. EXPERIMENTAL RESULTS 
The experiments aim at: a) comparing the proposed 

heuristics with Exhaustive Search (ES) using the real case 
study, b) evaluating effects of variation in request types on 
algorithms performance and execution time, c) analyzing 
effects of variation in request types and latency constraints 
on distribution factor.   

A. Comparison with Exhaustive Search (ES)  
Figure 3 shows how close the proposed algorithms are to 

the Exhaustive Search (ES) for the case study. Both of them 
could reach the same solution achieved with ES. As 
evidenced by Table III, the mean execution time for finding 
the solution using exhaustive search of solution space is 
extremely high comparing to our proposed algorithms. The 
execution time for the ES approach rises further 
exponentially with the computation effort for larger number 
of servers and providers; therefore, it cannot be considered as 
a practical solution for the selection problem with 
constraints.  To further examine the near-optimality of FCBB 
and the genetic approach, we conducted extensive 
experiments with 10 different requests (in terms of service 
requirements, graph density, message size, and request inter-
arrival time) for each category of 10, 15, and 20 servers. The 
results are shown in Table IV, where we can clearly observe 
that on average, the difference with deployment cost of ES 
results is just 7% for the FCBB and 1% for genetic approach. 
Therefore, FCBB and genetic approach can reach the near-
optimal solution without much computation cost. 

B. Results of variation in request types on algorithms 
performance and execution time 
Figure 4 and 5 depict the performance of our algorithms 

for different request types (strongly, moderately, and loosely 
connected) with different number of servers. In the case of 
workload ‘a’, as message size is small, differences are not 
much, except in strongly connected requests (Figure 4a) and 
especially for the case of 100 servers where genetic-based 
approach can save approximately 3% of cost. In other cases 
of workload ‘a’ when vertices are moderately or poorly 
connected the genetic-based approach has better or relatively 
same performance (regarding the cost) compare to the FCBB 
algorithm. However, when the message size is larger 
(workload ‘b’), as shown in Figure 5a), genetic algorithm in 
almost all cases outperforms the FCBB algorithm. In Table 
V, mean execution time for 20 experiments in relation to the 
number of servers for group of requests is given which 
shows the execution time of FCBB is negligible compare to 
genetic. It also shows that adding “forwards checking” 
feature successfully decreases execution time especially for 
the requests which require more than 10 servers and 
therefore it outperform the discard subset algorithm offered 
in [18] regarding the execution time while they both could 
result in same objective values for all cases. 

Therefore, it can be concluded that the performance of 
algorithms differs from one workload to another and when 
there exists a workload with small message size (like the e-
Business workload ’a’ [1]) performance difference of 
algorithms is low. In such cases FCBB can be used to save 
on execution time. However, when the message size 
increases [24] then they show comparatively higher 
differences, therefore, when users are looking for the least 
deployment cost instead of the execution time, the genetic-
based approach is more appropriate. 
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       Figure 3. Performance Evaluation for Case Study 

 
 
 
 
 
 
 
 
 
 
   

        
                (a) Strongly connected                                       (b) Moderately Connected                                 (c) Loosely Connected 

Figure 4. Change in Connectivity for Workload a  
   

 
   (a) Strongly connected                                           (b) Moderately Connected                          (c) Loosely Connected 

Figure 5. Change in Connectivity for Workload b 

C. Effects of variation in request types and latency 
constraints on distribution factor 
In this experiment, the objective is to study the possibility 

of network of appliances placement on different providers 
rather than one. For this purpose a metric named 
“distribution factor” is designed, which shows proportion of 
the number of different providers selected to the total 
number of providers. Table VI shows how a request type 
(data transfer rate, and graph density as explained in Table 
II) affects the distribution factor. For the loosely connected 
request with loose latency requirement, we can conclude that 
considering multiple cloud providers  decrease the 
deployment cost while still we can maintain the performance 
(by adhering to latency constraint). For all cases from 10 to 
100 servers when there is higher data transfer and number of 
connection between vertices the distribution factor decrease 
dramatically. For majority of cases, it decreases by more 
than 75 %. It means that FCBB selection algorithms have a 
tendency to select the same virtual unit provider for all 
vertices to save on communication cost. The same trend can 
be observed for the genetic-based approach. When the 
latency is tight, still if we consider multiple providers for 

deployment the cost is lower. Nevertheless, the distribution 
factor decreases by 25%.  

Consequently, the experiments show that network of 
appliances with higher graph densities and data transfer are 
less likely to be distributed across multiple providers and 
they are expected to have higher deployment cost. 

TABLE V. MEAN EXECUTION TIME (S) 

Algorithm 
Number of servers 

10 25 50 75 100 
FCBB 0.103 0.115 0.288 0.407 0.841 

Discarding 
subset 0.138 0.271 0.849 2.339 6.091 

genetic 31.997 144.426 497.377 1288.056 1814.488 

TABLE VI.    DISTRIBUTION FACTOR 

Request type Number of servers  
10 25 50 75 100 

Loosely connected & loose 
latency 44% 55% 55% 55% 44% 

Strongly connected 11% 11% 11% 11% 11% 
Tight  latency  22% 44% 33% 33% 33% 

 

TABLE III.   MEAN EXECUTION TIME FOR CASE STUDY 

 
Algorithm Mean Execution time(s) 

FCBB 0.102 
genetic 36.393 

Exhaustive Search (ES) 3248.152 
 

TABLE IV. MEAN  EXHAUSTIVE SEARCH(ES) 
COSTS/ALGORITHMS COSTS 

 
Algorithm 

Number of servers 
10 15 20 

ES/ FCBB  0.9841 0.9175 0.9013 
ES/genetic 0.9952 0.9868 0.9923 
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IX. RELATED WORK 
The concept of virtual appliances was originally 

introduced to simplify the deployment and management of 
desktop personal computers in enterprise and home 
environments [26]. Then they have been adapted in Grid and 
Cluster Computing environments to simplify the 
deployments [27]. Now with the emergence of Cloud 
Computing, which utilizes virtualization to provide elastic 
usage of resources, virtual appliances are becoming the 
preferred technology to deploy applications on virtual 
machines with minimum effort. 

Sun et al. [5] showed that by utilizing virtual appliances, 
the deployment process of virtual machines can be made 
simpler and easier. Wang et al. [29] presented a framework to 
improve the efficiency of resource provisioning in large data 
centers using virtual appliances. Similarly, a framework for 
service deployment in Cloud based on virtual appliances and 
virtual machines has been introduced in our previous work 
[9]. That research focused on selecting suitable virtual 
machines using ontology based discovery model, packaging, 
and deploying them along with virtual appliances in the 
Cloud platform, and monitoring the service levels using third 
parties. In this work, we are concentrating on QoS-based 
virtual unit and appliance composition where multiple 
appliances need to be deployed across multiple Clouds with 
acceptable latency and reliability to achieve users’ business 
objectives. 

A single virtual appliance on a virtual unit will not be 
able to fulfill all the requirements of a business problem. 
Inevitably we will require more than one virtual appliance 
and unit working together to provide a complete solution. 
Hence it is important to develop compositions of virtual unit 
and appliances. Konstantinou et al. [30] proposed an 
approach to plan, model, and deploy virtual appliance 
compositions. In their approach, the solution model and the 
deployment plan for virtual appliance composition in Cloud 
platform are developed by skilled users and executed by 
unskilled users. As cited by them, the contribution has not 
offered an approach for selection of virtual appliance and 
machine providers. In our work, however, we consider that 
users will be only aware of the high level components that 
are required for the composition to address their business 
objectives and our solution provides an approach to select 
the best composition based on their functional and QoS 
requirements. Similarly Chieu et al. [31] proposed the use of 
composite appliances to automate the deployment of 
integrated solutions. However in their work as well, QoS 
objectives are not considered when building the composition. 

Characteristics of the appliance selection and 
composition in Cloud differ from works done in other 
contexts such as Grid and web services. Grid Computing 
aims to ”enable resource sharing and coordinated problem 
solving in dynamic, multi-institutional virtual 
organizations”[2]. Therefore, the QoS management and 
composition works in this context mainly focus on load 
balancing (applying queuing theory and market driven 
strategy [15]) and fair distribution of resources among 
service requests [21, 22]. Most of these works proposed 

constraint satisfaction based matchmaking algorithm (CS-
MM) and other artificial intelligence based optimization 
techniques to improve the performance of scheduling. 
However, In Service Oriented Architecture’s (SOA) context 
the main concern is defining QoS language  [6,12] to express 
user preferences and QoS properties of the service (semantic 
based [17, 19]). In this context, for automated web services 
composition, various techniques such as workflow and AI 
planning have been adapted [32].  

However in the context of Cloud computing, selection 
objective is not a fair distribution of resources between 
requesters, because in Cloud resources can be considered as 
infinite [20]. Instead, Cloud customers have emphasized 
more on QoS dimensions such as reliability, and cost [2]. 
Therefore, in this work we present a novel way to measure 
composition reliability and suitability based on Service-
Level Agreements (SLA). In addition, the data transfer cost 
[20] is also included in our deployment cost. The importance 
of modeling data transfer cost can be realized by the example 
of deployment in Amazon Cloud where data transfer costs 
approximately $100 per terabyte. These costs quickly add up 
and become a great concern for the administrator. 

In comparison with our approach for appliance 
composition, works that applied Analytical Hierarchy 
Process (AHP) and Multi-Attribute Utility Theory (MAUT) 
[12], can only perform well when number of explicitly given 
alternatives is small and number of objectives are limited. In 
contrast, as shown in section VIII, our approach can deal 
efficiently with a large number of Cloud services in the 
repository (1200 services). Similarly another work has 
utilized Intutitionistic Fuzzy Set (IFS) for ranking service 
compositions in the context of Grid and SOA [28]. 
Nevertheless it does not deal with users’ constraints such as 
latency and budget. Moreover, when the problem is NP-hard 
the execution time is not acceptable. In addition, composition 
optimization approaches have been categorized by Jaeger et 
al. [18] to four types namely pattern based, discarding subset, 
bottom-up selection, and the greedy. Among them discarding 
subset has the best performance compare to the others when 
selection problem includes users constraints for QoS criteria. 
Consequently, we have compared our approach with 
discarding subset and as shown in section VIII; our approach 
has lower execution time. In summary, our work is unique in 
dealing with Cloud specific appliance composition 
challenges such as placement issues which includes cost of 
appliance transfer, other ongoing data transfer costs, and 
inter-cloud latency.   

X. CONCLUSIONS  
In this paper, we investigated Cloud provider selection 

problem for deploying a network of appliances. We proposed 
new QoS criteria and the problem of deployment is 
formulated and tackled by two approaches namely FCBB 
and genetic-based selection. We evaluated the proposed 
approaches by a real case study using real data collected 
from 12 Cloud providers, which showed that proposed 
approaches deliver near-optimal solution. Next, they were 
tested with different types of requests. The results show that 
when message size increases approaches present 
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comparatively higher differences, and if execution time is 
not the main concern of users, genetic-based selection in 
most cases achieves better value for the objective function. 
In contrast, if the massage size between appliances is small, 
FCBB can be used to save on execution time. Further, based 
on conducted experiments, we found out that network of 
appliances with higher graph density and data transfer are 
less likely (in contrast to requests with lower data transfer) to 
be distributed across multiple providers. However, for 
requests with tight latency requirements, appliances are still 
placed across multiple providers to save on deployment cost. 
In future, we plan to investigate integration of SLA-based 
discovery and selection to our system to further enhance QoS 
for end users. 
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