
1

An Evaluation of Economy-based Resource Trading
and Scheduling on Computational Power Grids for
Parameter Sweep Applications

Rajkumar Buyya, Jonathan Giddy, and David Abramson

School of Computer Science and Software Engineering and CRC for Enterprise Distributed
Systems Technology, Monash University, Caulfield Campus, Melbourne, AUSTRALIA.
Email:{rajkumar, jon, davida}@csse.monash.edu.au

Key words: Grid Computing, Computational Economy, Resource Trading, Nimrod/G
Resource Broker, Scheduling, and Parameter Sweep Applications.

Abstract: Computational Grids are becoming attractive and promising platforms for
solving large-scale (problem solving) applications of multi-institutional
interest. However, the management of resources and scheduling computations
in the Grid environment is a complex undertaking as they are (geographically)
distributed, heterogeneous in nature, owned by different individuals or
organisations with their own policies, different access and cost models, and
have dynamically varying loads and availability. This introduces a number of
challenging issues such as site autonomy, heterogeneous substrate, policy
extensibility, resource allocation or co-allocation, online control, scalability,
transparency, and “economy of computations”. Some of these issues are being
addressed by system-level Grid middleware toolkits such as Globus.
 Our work in general focuses on economy/market driven resource
management architecture for the Grid; and in particular on resource brokering
and scheduling through a user-level middleware system called Nimrod/G and
economy of computations through a system-level middleware infrastructure
called GRACE (GRid Architecture for Computational Economy). Nimrod/G
supports modeling of a large-scale parameter study simulations (parameter
sweep applications) through a simple declarative language or GUI and their
seamless execution on global computational Grids. It uses GRACE services
for identifying and negotiating low cost access to computational resources.
The Nimrod/G adaptive scheduling algorithms help in minimising the time
and/or the cost of computations for user defined constraints. These algorithms
are evaluated in different scenarios for their effectiveness for scheduling
parameter sweep applications in Grid environments such as GRACE and core
middleware (Globus, Legion, and/or Condor) enabled federated Grids.

2 Rajkumar Buyya, Jonathan Giddy, and David Abramson

1. INTRODUCTION

The growing popularity of the Internet/Web and the availability of powerful
computers and high-speed networks as low-cost commodity components are
changing the way we do computing and use computers. The interest in coupling
geographically distributed resources is also growing (leading to what are popularly
called Computational Grids [11]) for solving large-scale problems. The
management of resources in a Grid environment becomes complex, as they are
(geographically) distributed, heterogeneous in nature, owned by different individuals
or organisations each having their own resource management policies, different
access-and-cost models, and subjected to dynamically changing load-and-
availability conditions. This introduces a number of challenging issues including site
autonomy, heterogeneous substrate, policy extensibility, resource allocation or co-
allocation, online control [10], and “economy of computations” [4] that Grid
resource management systems need to address. Some or all of these issues are being
addressed by a number of (on going) Grid computing projects world-wide [2][7]
including Globus [8], Legion [13], Information Power Grid [21], NetSolve [14],
Ninf [20], AppLes [15], Nimrod/G [1] [4], DISCWorld [16], and JaWS [22].
Although computational economy is one of the key issues in Grid computing, it is
rarely taken into consideration in the design of most of these systems.

We strongly feel that for the ultimate success of Computational Grids as a
production-oriented commercial platform for solving problems, they need to support
market/economy -based mechanisms in resource management. In [4], we present a
number of arguments for the need of computational economy. It primarily offers a
mechanism for encouraging resource owners to contribute their resource(s) for the
construction of a Grid and compensate them based on the resource usage or value of
work done. This concern is also being expressed in Scientific American journal [6]:
“So far not even the most ambitious metacomputing prototypes have tackled
accounting: determining a fair price for idle processor cycles. It all depends on the
risk, on the speed of the machine, on the cost of communication, on the importance
of the problem—on a million variables, none of them well understood. If only for
that reason, metacomputing will probably arrive with a whimper, not a bang”. In a
Grid environment, a set of resources can dynamically team up (on demand) to solve
a given problem and have their own mechanism for sharing earnings/profits among
themselves. This type of mutually agreed teaming up is quite useful for developing
computational economy for executing parallel application tasks that have high
degree of message communications for sharing partial results. This is a subject of
our future investigation.

The remaining sections are organised as follows. In section 2, we focus the use
of economy -based model in resource selection through trading services. In section 3,
we discuss adaptive algorithms for scheduling parameter sweep applications on the
Grid and in section 4, we present their evaluation for various scenarios.

An Evaluation of Economy-based Resource Trading and Scheduling on
Computational Power Grids for Parameter Sweep Applications

3

2. GRACE-ENABLED NIMROD/G

A number of Grid computing systems [2] are being developed, implemented,
and deployed mainly based on three architectural models [5]: hierarchical, abstract
owner, and market. In our earlier work [4], we proposed market/economy model
based architecture for Grid resource management. One of the possible
(implementation) architectures for this market/economy model is shown in Figure 1.
The architecture varies depending on the method/protocol used (by trade manager)
in determining or negotiating the resource access cost. The key components of
economy -driven resource management system include,

• User Applications (sequential, parametric, parallel, or collaborative apps)
• The Grid Resource Broker (a.k.a., Super/Global/Meta Scheduler)
• Grid Middleware
• The Domain Resource Manager (Local Scheduler or Queuing system)

We briefly discuss some of these components and further details can be found in our
earlier works [1][4][5].

The resource broker acts as a mediator between the user (application) and Grid
resources using middleware services. It is responsible for the management of the
whole experiment on the Grid. This includes resource discovery, resource selection
and trading (including negotiation of access cost), the binding of application, data,
and hardware resources, the initiation of computations, any required adaptation to
changes in the Grid resources, and the collection of results.

Figure 1 . Market/Economy Model for Grid Resource Management.

The Grid middleware offers services that help in coupling a Grid user through
resource broker or Grid enabled application and (remote) resources. It offers core
services [2][11] such as remote process management, co-allocation of resources,
storage access, information publication (directory), security, authentication, and

4 Rajkumar Buyya, Jonathan Giddy, and David Abramson

Quality of Service (QoS) such as resource reservation for guaranteed availability
and trading for minimising computational cost.

The components that are specifically responsible for managing economy of
computations on the Grid are the schedule adviser, trade manager, and trader
server. The schedule adviser uses services of Grid Explorer for resource discovery,
trade server for negotiating access costs from trader server, and scheduling
algorithms for identifying mappings (jobs to resources) that meet user requirements
(deadline and cost minimisation). The trade server decides access costs based on
resource-owner defined charging algorithms/policies and interacts with accounting
system for recording usage details and billing as per negotiation.

Nimrod/G Resource Broker

The Nimrod/G resource broker (a.k.a. superscheduler, or metascheduler) is a
global resource management and scheduling system (see Figure 2) that supports
deadline and economy -based computations in Grid computing environments [1][3]
for parameter sweep applications. It supports a simple declarative parametric
modeling language for expressing parametric experiments. The domain experts
(application area experts/users) can easily create a plan for parameter studies and
use the Nimrod/G broker to handle all issues related to seamless management issues
including resource discovery, mapping jobs to appropriate resources, data and code
staging and gathering results from multiple Grid nodes.

Figure 2 . Nimrod/G Resource Broker.
Initially Nimrod/G was targeted for Globus, but the latest version is being

abstracted and is now capable of deploying computations on Grids using other
middleware systems such as Legion and Personal Condor. With a minimal effort
Nimrod/G can be enabled to use services of other middleware systems including

An Evaluation of Economy-based Resource Trading and Scheduling on
Computational Power Grids for Parameter Sweep Applications

5

Ninf and NetSolve leading to federated Grid computing1. However, it should be
noted that most of these (as of today) do not offer on-demand/online trading services
for low-cost access to resources. This limitation is overcome by our GRid
Architecture for Computational Economy (GRACE) [4] middleware infrastructure
that can co-exist with system-level middleware toolkit (like Globus) services. The
higher-level Grid services or tools like Nimrod/G broker can use them for dynamic
online negotiation for access to Grid resources at lower cost and also to make
deadline vs. cost trade-off during scheduling. This paper presents the usage of
GRACE services in Nimrod/G and its evaluation through the execution of simulated
parameter sweep applications for various user defined constraints (such as limited
budget and time) in a controlled and repeatable/reproducible manner.

3. SCHEDULING ALGORITHMS

Parameter studies (p-studies) involve the execution of a large number of
(independent) tasks over a range of parameters. Scheduling of such applications
appears simple, but complexity arises when users place QoS constraints like
execution time and computation cost limitations. Such a guarantee of service is hard
to provide in a Grid environment as its resources are shared, heterogeneous,
distributed in nature, and owned by different organisations having their own policies
and charging mechanisms. In addition, scheduling algorithms need to adapt to the
changing load and resource availability conditions in the Grid in order to achieve
performance and at the same time meet cost constraints. In our Nimrod/G
application level resource broker (also called an application level scheduler) for the
Grid, we have incorporated three adaptive algorithms for scheduling:

• Time Minimisation, within time and budget constraints,
• Cost Minimisation, within time and budget constraints,
• None Minimisation, within time and budget constraints.

Table 1 : Adaptive Scheduling Algorithms.

Adaptive Scheduling
Algorithms

Execution Time
 (not beyond deadline)

Execution Cost
 (not beyond budget)

Time Minimisation Minimise Limited by budget
Cost Minimisation Limited by deadline Minimise
None Minimisation Limited by deadline Limited by budget

1 Federated grids can couple private, enterprise, state, national, and/or international grids each

powered using different grid technologies. Global resource brokers like Nimrod/G can
simultaneously use all these grids for solving very large-scale problems economically. In
this kind of environment the management of heterogeneity, scalability, transparency,
security and open standards will be major issues.

6 Rajkumar Buyya, Jonathan Giddy, and David Abramson

The Time Minimisation algorithm attempts to complete the experiment as
quickly as possible, within the budget available. A description of the core of the
algorithm follows:
1. For each resource, calculate the next completion time for an assigned job, taking

into account previously assigned jobs.
2. Sort resources by next completion time.
3. Assign one job to the first resource for which the cost per job is less than or

equal to the remaining budget per job.
4. Repeat all steps until all jobs are assigned.

The Cost Minimisation algorithm attempts to complete the experiment as
economically as possible within the deadline.
1. Sort resources by increasing cost.
2. For each resource in order, assign as many jobs as possible to the resource,

without exceeding the deadline.

 A final algorithm (“None Minimisation”) attempts to complete the experiment
within the deadline and cost constraints without minimising either.
1. Split resources by whether cost per job is less than or equal to the budget per job.
2. For the cheaper resources, assign jobs in inverse proportion to the job

completion time (e.g. a resource with completion time = 5 gets twice as many
jobs as a resource with completion time = 10).

3. For the dearer resources, repeat all steps (with a recalculated budget per job)
until all jobs are assigned.

Note that the implementations of all the above algorithms contain extra steps for
dealing with the initial startup (when average completion times are unknown), and
for when all jobs cannot be assigned to resources (infeasible schedules).

4. EXPERIMENTATION AND EVALUATION

In addition to accessing real computational resources, Nimrod can also simulate
the execution of jobs on a test queue. These simulated queues are useful for testing
the scheduling algorithms, since their behaviour can be controlled very precisely. A
test queue runs each submitted job in succession and the apparent wallclock time
and reported CPU usage can be controlled exactly.

For this simulation, we created experiments containing 100 jobs, each with a 90
second running time, giving a total computation time of 9000 seconds. For each
experiment, we created 10 test queues with different (but fixed) access costs of 10,
12, 14, 16, 18, 20, 22, 24, 26, and 28 units/CPU-second. The optimal deadline for
this experiment is achieved when each queue runs 10 jobs in sequence, giving a
running time of 900 seconds for the 100 jobs.

We selected three deadlines: 990 seconds (the optimal deadline plus 10%), 1980
seconds (990 x 2), and 2970 seconds (990 x 3). The 10% allowance allows for the
fact that although the queues are simulated, and behave perfectly, the standard
scheduler has some delays built in.

An Evaluation of Economy-based Resource Trading and Scheduling on
Computational Power Grids for Parameter Sweep Applications

7

We selected three values for the budget. The highest is 252000 units, which is

the amount required to run all jobs on the most expensive queue. Effectively, this
allows the scheduler full freedom to schedule over the queues with no consideration
for the cost. A budget of 171000 units is the budget required to execute 10 jobs on
each of the queues. Finally, the lowest budget of 126000 units is the budget
required to execute 20 jobs on each of the 5 cheapest queues. Note that for this
value, the deadline of 990 seconds is infeasible, and the deadline of 1980 seconds is
the optimal deadline plus 10%.

Table 2 shows a summary of results for each combination of scheduling
algorithm, deadline and budget, and the resulting percentage of completed jobs, the
total running time, and the final cost. The jobs marked “infeasible” have no
scheduling solution that enables 100% completion of jobs. The jobs marked “hard”
have only one scheduling solution.

Table 2. Behaviour of Scheduling Algorithms for various scenarios on the Grid.

Algorithm Deadline Budget Completed Time Cost Notes

cost 990 126000 85% 946 125820 infeasible

cost 990 171000 84% 942 139500 hard

cost 990 252000 94% 928 156420 hard

cost 1980 126000 97% 1927 124740 hard

cost 1980 171000 99% 1918 128520

cost 1980 252000 98% 1931 127620

cost 2970 126000 98% 2931 116820

cost 2970 171000 98% 2925 116820

cost 2970 252000 100% 2918 118800

none 990 126000 78% 919 120060 infeasible

none 990 171000 99% 930 168480 hard

none 990 252000 100% 941 171000 hard

none 1980 126000 97% 1902 125100 hard

none 1980 171000 100% 1376 160740

none 1980 252000 100% 908 171000

none 2970 126000 99% 2928 125100

none 2970 171000 100% 1320 161460

none 2970 252000 100% 952 171000

time 990 126000 36% 955 50040 infeasible

time 990 171000 100% 913 171000 hard

time 990 252000 100% 930 171000 hard

time 1980 126000 80% 1968 101340 hard

time 1980 171000 100% 909 171000

time 1980 252000 100% 949 171000

time 2970 126000 100% 2193 126000

8 Rajkumar Buyya, Jonathan Giddy, and David Abramson

time 2970 171000 100% 928 171000

time 2970 252000 100% 922 171000

We analyse the behaviour of the queues by examining the usage of the queues
over the period of the experiment. For the Cost Minimisation algorithm, Figure 3
shows the node usage for a deadline of 1980 seconds. After an initial spike, during
which the scheduler gathers information about the queues, the scheduler calculates
that it needs only use the 4-5 cheapest queues in order to satisfy the deadline.
(Actually, it requires exactly 5, but the initial spike reduces the requirements a little.)
Note that the schedule is similar, no matter what the allowed budget is. Since we are
minimising cost, the budget plays little part in the scheduling, unless the limit is
reached. This appears to have happened for the lowest budget, where the
completion rate was 97%. The budget of 126000 units is only enough to complete
the experiment if the cheapest 5 nodes are used. Because of the initial spike, this
experiment appears to have run out of money. The other experiments also did not
complete 100% of the jobs, but this is mainly because in seeking to minimise cost,
the algorithm stretches jobs out to the deadline. This indicates the need for a small
margin to allow the few remaining jobs to complete close to the deadline.

Figure 3. Cost Minimsation scheduling behaviour for various budgets.

The equivalent graph for the Time Minimisation algorithm is shown in Figure 4.
Here we see that except for the case of a limited budget, we get a rectangular shape,
indicating the equal mapping of jobs to each resource. Only the experiment with a
very limited budget follows the pattern experienced above.

Looking at the equivalent graph for the None Minimisation algorithm, we see a
lot more variation in the schedules chosen for different budgets. The schedule with
a very large budget is equivalent to the Time Minimisation algorithm. The schedule
with the low budget is almost the same as the Cost Minimisation algorithm.

0

2

4

6

8

10

12

Time

N
o

d
es budget=126000

budget=171000

budget=252000

An Evaluation of Economy-based Resource Trading and Scheduling on
Computational Power Grids for Parameter Sweep Applications

9

5. CONCLUSIONS AND FUTURE WORK

In this paper we have discussed an economy -based model for resource
management and scheduling in the Grid through Nimrod/G and GRACE services.
The adaptive scheduling algorithms have been evaluated for various application
scenarios and user constraints and have demonstrated the capabilities of our
resource broker and computational economy model. Future work focuses on the
use of a resource reservation model in scheduling and competitive charging
algorithms that enables Nimrod/G to guarantee the user up-front when
application processing can complete and how much it is going to cost.

Figure 4 . Time Minimisation scheduling behaviour for various budgets.

Figure 5. None Minimisation scheduling behaviour for various budgets.

0

2

4

6

8

10

12

Time

N
od

es

budget=126000

budget=171000
budget=252000

0

2

4

6

8

10

12

Time

N
o

d
es

budget=126000

budget=171000

budget=252000

10 Rajkumar Buyya, Jonathan Giddy, and David Abramson

6. REFERENCES

[1] Abramson, D., Giddy, J., and Kotler, L., High Performance Parametric Modeling with
Nimrod/G: Killer Application for the Global Grid?, International Parallel and
Distributed Processing Symposium (IPDPS 2000), Mexico.

[2] Baker M., Buyya R., Laforenza D., The Grid: International Efforts in Global
Computing, Intl. Conference on Advances in Infrastructure for Electronic Business,
Science, and Education on the Internet (SSGRR'2000), Italy, 2000 (to appear).

[3] Buyya, R., Abramson, D., and Giddy, J., Nimrod/G: An Architecture for a Resource
Management and Scheduling System in a Global Computational Grid, HPC ASIA 2000,
China, IEEE CS Press, USA, 2000.

[4] Buyya R, Abramson D, and Giddy J, Economy Driven Resource Management
Architecture for Computational Power Grids, International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA2000), Las Vegas, USA.

[5] Buyya R., Chapin S., DiNucci D., Architectural Models for Resource Management in
Global Computational Grids, http://www.buyya.com/ecogrid/

[6] Gibbs W., Cyber View—World Wide Widgets, Scientific American, San Francisco,
USA - http://www.sciam.com/0597issue/0597cyber.html.

[7] Grid Computing Infoware (Info Centre) - http://www.gridcomputing.com/
[8] Globus - http://www.globus.org/
[9] Globus Testbeds - http://www-fp.globus.org/testbeds/
[10] Foster I. and Kesselman C., Globus: A Metacomputing Infrastructure Toolkit,

International Journal of Supercomputer Applications, 11(2): 115-128, 1997.
[11] Foster I. and Kesselman C. (editors), The Grid: Blueprint for a Future Computing

Infrastructure, Morgan Kaufmann Publishers, USA, 1999.
[12] Dongarra J., An Overview of Computational Grids and Survey of a Few Research

Projects, Symposium on Global Information Processing Technology, Japan, 1999.
[13] Legion - http://legion.virginia.edu/
[14] Casanova H. and Dongarra, J., NetSolve: A Network Server for Solving Computational

Science Problems, Intl. Journal of Supercomputing Applications and High Performance
Computing, Vol. 11, No. 3, 1997.

[15] AppLeS Project — http://apples.ucsd.edu
[16] Hawick K. et al, DISCWorld: An Environment for Service-Based Metacomputing, Future

Generation Computing Systems (FGCS), Vol. 15, 1999.
[17] Condor - http://www.cs.wisc.edu/condor/
[18] SETI@Home – http://setiathome.ssl.berkeley.edu/
[19] Distributed.Net – http://www.distributed.net/
[20] Ninf – http://ninf.etl.go.jp/
[21] NASA IPG – http://www.ipg.nasa.gov
[22] JaWS – http://roadrunner.ics.forth.gr:8080/
[23] EcoGRID – http://www.csse.monash.edu.au/~rajkumar/ecogrid/

