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SUMMARY

Computational Grids and peer-to-peer (P2P) networks enable the sharing, selection, and aggregation
of geographically distributed resources for solving large-scale problems in science, engineering, and
commerce. The management and composition of resources and services for scheduling applications,
however, becomes a complex undertaking. We have proposed a computational economy framework for
regulating the supply of and demand for resources and allocating them for applications based on the
users’ quality-of-service requirements. The framework requires economy-driven deadline- and budget-
constrained (DBC) scheduling algorithms for allocating resources to application jobs in such a way
that the users’ requirements are met. In this paper, we propose a new scheduling algorithm, called the
DBC cost–time optimization scheduling algorithm, that aims not only to optimize cost, but also time
when possible. The performance of the cost–time optimization scheduling algorithm has been evaluated
through extensive simulation and empirical studies for deploying parameter sweep applications on global
Grids. Copyright c© 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Computational Grids [1] and peer-to-peer (P2P) computing [2] networks are emerging as next-
generation parallel and distributed computing platforms for solving large-scale computational and
data-intensive problems in science, engineering, and commerce. They enable the sharing, selection,
and aggregation of a wide variety of geographically distributed resources including supercomputers,
storage systems, databases, data sources, and specialized devices owned by different organizations.
However, resource management and application scheduling is a complex undertaking due to large-
scale heterogeneity in resources, management policies, users, and application requirements in these
environments [3].

A typical world-wide Grid computing environment is shown in Figure 1. In such a Grid
marketplace and economy, the two key players are: resource owners (Grid service providers) and
end users (Grid service consumers). The resource owners and consumers/end-users have different
goals, objectives, strategies, and demand patterns. The resources are heterogeneous in terms of
their architecture, power, configuration, and availability. They are owned and managed by different
organizations with different access policies and cost models that vary with time, users, and
priorities. Different applications have different computational models that vary with the nature of the
problem.

In our earlier work [4–7], we investigated the use of economics as a metaphor for management of
resources and scheduling applications in Grid computing environments. The computational economy
framework provides a mechanism for regulating the supply of and demand for resources and allocating
them to applications based on the users’ quality-of-services (QoS) requirements [3]. It also offers an
incentive to resource owners for sharing resources on the Grid, and offers end users a trade-off between
the timeframe for result delivery and computational expenses.

A Grid scheduler, often called resource broker, acts as an interface between the user and distributed
resources and hides the complexities of Grid computing [4,5]. It performs resource discovery,
negotiates for access costs using trading services, maps jobs to resources (scheduling), stages the
application and data for processing (deployment), starts job execution, and finally gathers the results.
It is also responsible for monitoring and tracking the progress of application execution along with
adapting to the changes in the runtime environment of the Grid, variation in resource share availability,
and failures. Essentially, the Grid broker does application scheduling on distributed Grid resources
on which it does not have full control—the local scheduler has its own policies and performs actual
allocation of resource(s) to the user job(s).

The previous work in scheduling on distributed systems such as clusters and supercomputers has
focused on extracting the maximum throughput from the entire system [8,9]. Grid scheduling, as shown
by some of the related works in Section 2, concentrates on improving response times in an environment
containing autonomous resources whose availability dynamically varies with time. The Grid scheduler
has to interact with the local schedulers managing computational resources and adapt its behavior to
changing resource loads. Thus the scheduling is conducted from the perspective of the application or
the user rather than that of the system.

In our Grid economy framework, the resource brokers use economy-driven deadline and budget-
constrained (DBC) scheduling algorithms for allocating resources to application jobs in such a way
that the users’ requirements are met. In our early work [7], we developed three scheduling algorithms
for cost, time, and time-variant optimization strategies that support deadline and budget constraints.
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Figure 1. A generic view of the World-Wide Grid computing environment.

We implemented them within the Nimrod-G broker and explored their capability for scheduling task-
farming or parameter-sweep applications such as drug design [10] on the World-Wide Grid (WWG)
testbed resources [8]. To meet users’ QoS requirements, the broker leases Grid resources and services
dynamically at runtime depending on their capability, cost, and availability.

In this work, we propose a new scheduling algorithm, called DBC cost–time optimization, which
extends the DBC cost-optimization algorithm to optimize for time, keeping the cost of computation at
the minimum. Resources with the same cost are grouped together and a time-optimization scheduling
strategy is applied while allocating jobs to a group. We demonstrate the ability of this new scheduling
algorithm by implementing it within the economic Grid resource broker simulator built using the
GridSim toolkit [11]. The performance of this new algorithm is evaluated by scheduling a synthetic
task-farming application on simulated WWG testbed resources for different deadline and budget
scenarios. We then compare and contrast the results of scheduling with the cost-optimization algorithm.

The rest of this paper is organized as follows. The related works in Grid resource management
and scheduling are discussed in Section 2. Issues in scheduling applications on Grids along with
a new DBC cost–time optimization scheduling algorithm proposed in this paper are discussed in
Section 3. An economy-driven grid resource broker simulated using the GridSim toolkit and its internal
components that simulate and manage the execution of task-farming applications are presented in
Section 4. The simulation of heterogeneous resources with different capabilities and access costs,
the creation of a synthetic application, and the evaluation, by simulation, of the proposed cost–time
optimization scheduling algorithm versus the cost optimization algorithm is discussed in Section 5.
The proposed algorithm is evaluated by empirical studies in Section 6. The final section presents the
summary and conclusion.

2. RELATED WORK

A number of projects are investigating scheduling on distributed systems [3]. They include Grid
resource management and scheduling systems such as Condor [12,13], Globus [14], Legion [15],
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AppLeS [16], NetSolve [17], and DISCWorld [18], which use system-centric scheduling strategies,
and REXEC [19] and Spawn [20], which support computational economy-based resource management
within cluster computing environments. The interest in computational economy is rapidly increasing
within the Grid community [21] and projects such as G-Commerce [22] are exploring competitive
resource pricing and allocation issues within the Grid environments.

The Application-Level Scheduling (AppLeS) project builds agents for each application responsible
for offering a scheduling mechanism [16]. It uses a system-centric scheduling policy, which is targeted
at minimizing the completion time—it does not take account of the economic cost of jobs processing
while selecting resources. A recently developed AppLeS parameter-sweep template (APST) also uses
system-centric scheduling strategies [23].

NetSolve is a client–agent–server system, which enables the user to solve complex scientific
problems remotely [17]. The NetSolve agent does the scheduling by searching for those resources that
offer the best performance in a network. The applications need to be built using one of the application
programming interfaces (APIs) provided by NetSolve to perform remote procedure call (RPC)-like
computations. NetSolve also provides an API for creating task-farming applications. The scheduling
system maps jobs on resources that have appropriate libraries without taking the cost/price for
processing jobs on them into consideration. Ninf [24] is an RPC implementation for grid computing
similar to NetSolve.

Distributed Information Systems Control World (DISCWorld) is a service-oriented metacomputing
environment, based on the client–server–server model [18]. Remote users can log in to this environment
over the Internet and request access to data, and also invoke services or operations on the available data.
DISCWorld aims for remote information access. The scheduling strategies used in the DISCWorld
system are also system-centric in nature.

Another related tool that uses the concept of computational economy is REXEC, a remote execution
environment [19] for co-operative distributed systems such as clusters with a centralized scheduling
manager. At the command line, the maximum rate (credits per minute) that the user is willing to pay
for CPU time can be specified. The REXEC client selects a node that fits the user’s requirements and
executes the application on it. The REXEC system provides an extended shell for remote execution of
applications on clusters. Its scheduling strategies are targeted for centralized systems, and the allocation
of resource share is proportional to the users’ valuation of their jobs. In our Grid resource broker,
scheduling strategies are targeted for geographically distributed systems—each resource has its own
scheduler that performs actual allocation of resources to user jobs. That means cluster schedulers use
cooperative computing economy since they aim for global optimization, whereas Grid schedulers
use competitive computing economy since every entity aims to optimize its own objectives.

Spawn [20] is one of the earliest computational-economies-based resource-allocation systems.
It uses a second-price auction model where tasks have to bid for computational time. Allocation of
funding for tasks has to be performed by the application-level manager, which needs to be implemented
by a programmer along with the necessary allocation strategies and priorities. That is, Spawn
has mostly focused on developing an auction-based infrastructure for the computing marketplace
and has left it to the programmers (application developers) to take care of allocation policies and
algorithms. In fact, this complements the work described in this paper, as our focus is on developing
a computational-economy-based application-scheduling system in addition to providing a parameter-
sweep application-creation framework.
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A number of works have explored the problem of deadline scheduling in real-time systems [25–27].
However, they mostly consider deadline parameters for individual jobs rather than groups. In addition,
they have not addressed the concept of leasing third party services for meeting the deadline as they are
restricted to centralized resource management schemes and single administrative domain resources.

3. DBC COST–TIME OPTIMIZATION SCHEDULING ALGORITHM

3.1. Application model and scheduling

The parameter-sweep application model has emerged as a ‘killer application model’ [4] for composing
high-throughput computing (HTC) applications for processing on global Grids. This model is a
combination of task and data parallel models and applications formulated using this model contain
large number of independent jobs operating on different data sets. A range of scenarios and parameters
to be explored are applied to the program input values to generate different data sets. The programming
and execution model of such applications resembles the Single Program Multiple Data (SPMD) model.
The execution model essentially involves processing N independent jobs (each with the same task
specification, but a different dataset) on M distributed computers where N is, typically, much larger
than M . Fortunately, this high-throughput parametric computing model is simple, yet powerful enough
to formulate distributed execution of many application areas such as: radiation equipment calibration
analysis [4], searching for extra-terrestrial intelligence [28], protein folding [29], molecular modeling
for drug design [10], human-genome sequence analysis [30], brain activity analysis, high-energy
physics events analysis [31], ad hoc network simulation [32], crash simulation, tomography [33],
financial modeling, and Mcell simulations [34]. Therefore, high-throughput parametric computing is
considered as the killer application for the Grid.

Scheduling and orchestrating the execution of parameter-sweep applications on world-wide
distributed computers appears simple, but complexity arises when users place QoS constraints
such as execution completion time (deadline) and computation cost (budget) limitations along
with optimization parameter preference. Such a guarantee of service is hard to provide in a Grid
environment since its resources are shared, heterogeneous, distributed in nature, and owned by different
organizations which have their own policies and charging mechanisms. In addition, scheduling
algorithms need to adapt to the changing load and resource availability conditions in the Grid in order
to achieve performance and at the same time meet the deadline and budget constraints.

The integration of computational economy as part of a scheduling system greatly influences the way
computational resources are selected to meet the users’ requirements. A user should be able to submit
their application along with their requirements to a scheduling system such as Nimrod-G, which can
process the application on the Grid on the user’s behalf and try to complete the assigned work within
a given deadline and cost. The deadline represents a time by which the user requires the result, and is
often imposed by external factors like production schedules or research deadlines.

3.2. A new scheduling algorithm

We have developed a number of algorithms for DBC scheduling of task-farming parameter-sweep
applications on the Grid. They are: cost-optimization, time-optimization, and conservative time-
optimization scheduling algorithms. The performance of these algorithms has been evaluated by
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implementing them within the Nimrod-G resource broker [11] for scheduling real-world applications
and economic-broker simulators [7] through synthetic workloads.

In this paper, we propose a new DBC Grid scheduling algorithm, called the cost–time optimization
scheduling algorithm, which builds on the cost-optimization and time-optimization scheduling
algorithms. This is accomplished by applying the time-optimization algorithm to schedule task-farming
application jobs on distributed resources having the same processing cost. A detailed algorithm for
mapping jobs to resources based on this new strategy is listed in Figure 2. An application containing N

jobs along with the deadline and budget constraints are passed as input parameters to the algorithm for
processing on M distributed resources/machines. Essentially, the user passes these details to the Grid
broker that leases resources dynamically at runtime depending on their availability, capability, cost,
and users’ QoS requirements. In the next subsection, we discuss methods for evaluation of this new
algorithm, and later sections present detailed evaluation.

3.3. Evaluation methods and complexity analysis

A variety of techniques and technologies exist for carrying out performance evaluation of resource-
management and scheduling algorithms. Some evaluation techniques include: analytical, simulation,
emulation and empirical. Some of the notable Grid tools are SimGrid [35] and GridSim [11] for
simulation; MicroGrid [36] for emulation; and Nimrod-G [5] that supports creation of pluggable
schedulers for empirical evaluation. In addition, empirical evaluation needs system-level Grid
middleware such as Globus for deploying jobs securely on Grid testbed resources.

Through analysis of the algorithm listed in Figure 2, it can be seen that the loop in step 4(e)
determines the time complexity. This loop costs 1 when there is 1 resource group (i.e. when all
M machines are of the same cost) and M when there are M resource groups (i.e. all machines have
different costs). Within this loop, the loop in step 4(i) costs N . Within the second loop, the step leading
to job matching costs is M for 1 resource group and 1 for M resource groups.

Bringing it all together, the overall complexity can be calculated as:

• O(1 ∗ (N ∗ (M)) = O(NM) when all resources have the same cost; and
• O(M ∗ (N ∗ (1))) = O(NM) when all resources have different costs.

The cost-optimization algorithm also has a time complexity of O(NM). However, as we will show
in later sections, the cost–time-optimization algorithm processes the jobs in less time than the cost-
optimization algorithm while using the same amount of budget.

Further on in this paper, we use simulation and empirical methods to evaluate the performance of
an economic-based resource allocation strategy. Simulation allows the creation of large-scale virtual
Grid environments, and usage and availability scenarios that can be repeated and controlled. We have
selected GridSim for simulation as it supports modeling and simulation of a variety of resources—
shared and distributed memory machines, managed as time- or space-shared resources. To evaluate
the feasibility of the proposed scheduling strategy, we have implemented a plug-in scheduler for the
Nimrod-G Grid resource broker. However, it should be noted that in a real Grid testbed, it is impossible
to conduct repeatable and comparable evaluations as the availability of resources varies with time and
there is no centralized control to create a stable environment. Sections 5 and 6 present the results of
evaluation through simulation and empirical methods respectively.
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Algorithm: DSC Scheduling with Cost Time Optimization (Application: N jobs, Resources: M, Deadline: D,
Budget: B)

(1) RESOURCE DISCOVERY: Identify characteristics, configuration, capability, and suitability of resources
using the Grid information services (GIS).

(2) RESOURCE TRADING: Identify the cost of all resources and the capability to be delivered per cost-unit.
The resource cost can be expressed in units such as processing cost per Million Instructions (MI) cost per
job, CPU cost per time unit etc., and the scheduler needs to choose suitable units for comparison.

(3) If the user supplies d and b factors, then determine the absolute deadline and budget based on the capability
of resources and their cost, and the application processing requirement (e.g. total MI required).

(4) SCHEDULING: Repeat while there exist unprocessed jobs and the current time and processing expenses
are within the deadline and budget limits. [This step is triggered for each scheduling event or whenever
a job completes. The event period is a function of deadline, job processing time, rescheduling overhead,
resource share variation, etc.]
[SCHEDULE ADVISOR with Policy]

(a) For each resource, predict and establish the job consumption rate or the available resource share
through the measure and extrapolation strategy taking into account the time taken to process previous
jobs.

(b) SORT the resources by increasing order of cost. If two or more resources have the same cost, order
them such that powerful ones (e.g. higher job consumption rate or resource share availability, but,
the first time, based on the total theoretical capability, say the total Million Instructions per second
(MIPS) are preferred first.

(c) Create resource groups containing resources with the same cost.
(d) If any of the resource has jobs assigned to it in the previous scheduling event, but not dispatched

to the resource for execution and there is variation in resource availability, then move appropriate
number of jobs to the Unassigned-Jobs-List. This helps in updating the whole schedule based on the
latest resource availability information.

(e) Repeat the following steps for each resource group as long as there exist unassigned jobs:

(i) Repeat the following steps for each job in the Unassigned-Jobs-List depending on the
processing cost and the budget availability: [It uses the time optimization strategy.]

• Select a job from the Unassigned-Jobs-List.
• For each resource, calculate/predict the job completion time taking into account

previously assigned jobs and the job completion rate and resource share availability.
• Identify the resource with the least completion time and assign the job to it provided

it is able to complete the job within the deadline. Remove the assigned job from the
Unassigned-Jobs-List.

(5) [DISPATCHER with Policy]
Repeat the following steps for each resource if it has jobs to be dispatched:

• Identify the number of jobs that can be submitted without overloading the resource. Our default
policy is to dispatch jobs as long as the number of user jobs deployed (active or in queue) is less
then the number of PEs (Processing Elements, i.e. CPUs) in the resource.

Figure 2. DBC scheduling with cost–time optimization.
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4. IMPLEMENTATION OF ECONOMIC GRID BROKER SIMULATOR

The GridSim toolkit is used to simulate a Grid environment and a Nimrod-G-like deadline and
budget constrained scheduling system called economic Grid resource broker. The simulated Grid
environment contains multiple resources and user entities with different requirements. The user and
broker entities extend the GridSim class. All the users create experiments containing application
specification requirements (a set of Gridlets that represent application jobs) and QoS requirements
(deadline and budget constraints with optimization strategy). When the simulation starts, the user
entity creates an instance of its own broker entity and passes a request for processing application jobs.
We briefly discuss features of the GridSim toolkit and its usage in the implementation of the economic
broker simulator that supports performance evaluation of scheduling algorithms.

4.1. GridSim: a Grid modeling and simulation toolkit

The GridSim toolkit provides a comprehensive facility for simulation of different classes of
heterogeneous resources, users, applications, resource brokers, and schedulers [11]. It has facilities
for the modeling and simulation of resources and network connectivity with different capabilities,
configurations, and domains. It supports primitives for application composition, information services
for resource discovery, and interfaces for assigning application tasks to resources and managing their
execution. These features can be used to simulate resource brokers or Grid schedulers for evaluating
performance of scheduling algorithms or heuristics. We have used the GridSim toolkit to create a
resource broker that simulates Nimrod-G for design and evaluation of deadline and budget constrained
scheduling algorithms with cost and time optimizations.

The GridSim toolkit resource modeling facilities are used to simulate the World-Wide Grid resources
managed as time- or space-shared scheduling policies. The broker and user entities extend the GridSim
class to inherit ability for communication with other entities. In GridSim, application tasks/jobs
are modeled as Gridlet objects that contain all the information related to the job and its execution
management details such as job length in MI, disk input/output operations, input and output file sizes,
and the job originator. The broker uses GridSim’s job management protocols and services to map a
Gridlet to a resource and manage it throughout its lifecycle. The broker also maintains full details of
application scheduling trace data both at coarse and fine levels, which can be used in performance
analysis.

4.2. Economic Grid broker simulator architecture

The broker entity architecture and its interaction with other entities is shown in Figure 3. The key
components of the broker are: experiment interface, resource discovery and trading, scheduling flow
manager backed with scheduling heuristics and algorithms, Gridlets dispatcher, and Gridlets receptor.
A detailed discussion of the broker implementation using the GridSim toolkit can be found in Buyya
and Murshed [11]. However, to enable the understanding of the broker framework in which the new
scheduling algorithm is implemented, we briefly present its operational model.

(1) The user entity creates an experiment that contains the application description (a list of Gridlets
to be processed) and sends user requirements to the broker via the experiment interface.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2005; 35:491–512



SCHEDULING PARAMETER SWEEP APPLICATIONS ON GLOBAL GRIDS 499

R1

Rm

.

.

.

.

.

.

.

.

C
T

 o
p
ti

m
iz

e

C
o
st

 o
p
ti

m
iz

e

T
im

e 
o
p
ti

m
iz

e

N
o
n

e 
O

p
t.

R
es

o
u

rc
e 

D
is

co
v

er
y

 

an
d
 T

ra
d
in

g

Gridlet Receptor

D
is

p
at

ch
er

. .. .

1

6

4

2

7
E

x
p
er

im
en

t 
In

te
rf

ac
e

3

5

Scheduling Flow Manager

R1

R2

Rn

User

Entity

(Broker Resource List and Gridlets Q)

GIS

Broker Entity

Grid Resources

Figure 3. Economic Grid resource broker architecture and its interaction with other entities.

(2) The broker resource discovery and trading module interacts with the GridSim GIS entity to
identify the contact information of the resources, and then interacts with resources to establish
their configuration and access cost. It creates a broker resource list that acts as a placeholder
for maintaining resource properties, a list of Gridlets committed for execution on the resource,
and the resource performance data as predicted through the measurement and extrapolation
methodology.

(3) The scheduling flow manager selects an appropriate scheduling algorithm for mapping Gridlets
to resources depending on the user’s requirements (deadline and budget limits, and optimization
strategy—cost, cost–time, time, and conservative-time). Gridlets that are mapped to a specific
resource are added to the Gridlets list in the broker resource. In this case, the broker selects the
algorithm for DBC cost–time-optimization scheduling.

(4) For each of the resources, the dispatcher selects the number of Gridlets that can be staged for
execution according to the usage policy to avoid overloading resources with single user jobs.

(5) The dispatcher then submits Gridlets to resources using the GridSim’s asynchronous service.
(6) When the Gridlet processing completes, the resource returns it to the broker’s Gridlet receptor

module, which then measures and updates the runtime parameter, resource or MI share available
to the user. It aids in predicting the job consumption rate for making scheduling decisions.

(7) Steps 3–6 continue until all the Gridlets are processed or the broker exceeds the deadline or
budget limits. At the end, the broker returns updated experiment data along with processed
Gridlets back to the user entity.

5. SIMULATION-BASED PERFORMANCE EVALUATION

To simulate and evaluate application scheduling in a GridSim environment using the economic Grid
broker requires the modeling and creation of GridSim resources and applications that model jobs
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as Gridlets. In this section, we present resource and application modeling along with the results of
scheduling experiments with QoS-driven application processing.

5.1. Resource modeling

We modeled and simulated a number of time- and space-shared resources with different characteristics,
configurations, and capability as those in the World-Wide Grid testbed. We have selected the latest CPU
models AlphaServer ES40, Sun Netra 20, Intel VC820 (800EB MHz, Pentium III), and SGI Origin
3200 1X 500 MHz R14k, released by their manufacturers Compaq, Sun, Intel, and SGI respectively.
The processing capability of these PEs in simulation time-units is modeled after the base value of
the SPEC CPU (INT) 2000 benchmark ratings [37]. To enable the users to model and express their
application processing requirements in terms of MI or MIPS on the standard machine, we assume the
MIPS rating of PEs is same as the SPEC rating.

Table I shows the characteristics of the resources simulated and their PE access cost per time unit in
Grid dollars (G$). The PE capability of resources is derived from their actual SPEC rating and access
cost in G$ is artificially assigned. The simulated resources resemble the World-Wide Grid testbed
resources used in the Nimrod-G scheduling experiments [38]. The access cost of a PE in G$/time unit
does not necessarily reflect the cost of processing when PEs have different capabilities. The brokers
need to translate the access cost into the G$/MI for each resource. Such translation helps in identifying
the relative cost of resources for processing Gridlets on them. It can be noted some of the resources in
Table I have the same MIPS/G$, for example, R4 and R8.

5.2. Application modeling

We have modeled a task-farming application that consists of 200 jobs. In GridSim, these jobs are
packaged as Gridlets whose contents include the job length in MI, the size of job input, and output data
in bytes, along with various other execution-related parameters when they move between the broker
and resources. The job length is expressed in terms of the time it takes to run on a standard resource
PE with SPEC/MIPS rating of 100. Gridlets’ processing time is expressed in such a way that they are
expected to take at least 100 time units with a random variation of 0–10 per cent on the positive side
of the standard resource. That means Gridlets’ job length (processing requirements) can be at least
10 000 MI with a random variation of 0–10 per cent on the positive side. This 0–10 per cent random
variation in Gridlets’ job length is introduced to model heterogeneous tasks similar to those present in
the real-world parameter-sweep applications.

5.3. Scheduling experiments with cost- and cost–time-optimization strategies

We performed both cost- and cost–time optimization scheduling experiments with different DBC
values for a single user. The deadline is varied in simulation time from 100 to 3600 in steps of 500.
The budget is varied from G$ 5000 to 22 000 in steps of 1000. The number of Gridlets processed,
deadline utilized, and budget spent for the DBC cost-optimization scheduling strategy is shown in
Figures 4(a), 4(c), and 4(e), and for the cost–time-optimization scheduling strategy in Figures 4(b),
4(d), and 4(f). In both cases, when the deadline is low (e.g. 100 time units), the number of Gridlets
processed increases as the budget value increases. When a higher budget is available, the broker leases
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Figure 4. The number of Gridlets processed, time, and budget spent for different deadline and time limits when
scheduled using the cost- and cost–time-optimization algorithms: (a) no. of Gridlets processed; (b) no. of Gridlets
processed; (c) time spent for processing Gridlets; (d) time spent for processing Gridlets; (e) budget spent for

processing Gridlets; (f) budget spent for processing Gridlets.
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expensive resources to process more jobs within the deadline. Alternatively, when scheduling with a
low budget, the number of Gridlets processed increases as the deadline is relaxed.

The impact of budget for different values of deadline is shown in Figures 4(e) and 4(f) for cost and
cost–time strategies. For a larger deadline value (see the time utilization for a deadline of 3600), the
increase in budget value does not have much impact on resource selection. When the deadline is too
tight (e.g. 100), it is likely that the complete budget is spent processing Gridlets within the deadline.

It can be observed that the number of Gridlets processed and the budget-spending pattern is similar
for both scheduling strategies. However, the time spent for the completion of all the jobs is significantly
different (see Figures 4(c) and 4(d)), as the deadline becomes relaxed. For deadline values from 100
to 1100, the completion time for both cases is similar, but as the deadline increases (e.g. from 1600 to
3600), the experiment completion time for the cost–time-scheduling optimization strategy is much less
than that for the cost-optimization scheduling strategy. This is because when there are many resources
with the same MIPS/G$, the cost–time-optimization scheduling strategy allocates jobs to them using
the time-optimization strategy for the entire deadline duration since there is no need to spent extra
budget for doing so. This does not happen in case of the cost-optimization strategy—it allocates as
many jobs as the first cheapest resource can complete by the deadline, and then allocates the remaining
jobs to the next cheapest resources.

A trace of resource selection and allocation using cost- and cost–time-optimization scheduling
strategies, shown in Figure 5, indicates their impact on the application processing completion time.
When the deadline is tight (e.g. 100), there is high demand for all the resources in a short time;
the impact of cost- and cost–time-scheduling strategies on the completion time is similar as all
the resources are used up so long as budget is available to process all jobs within the deadline
(see Figures 5(a) and 5(b)). However, when the deadline is relaxed (e.g. 3100), it is likely that all
jobs can be completed using the first few cheapest resources. In this experiment there were resources
with the same cost and capability (e.g. R4 and R8). The cost-optimization strategy selected resource R4
to process all the jobs (see Figure 5(c)), whereas the cost–time-optimization strategy selected both R4
and R8 (see Figure 5(d)) since both resources cost the same price, and completed the experiment earlier
than the cost-optimization scheduling (see Figures 4(c) and 4(d)). This situation can be observed clearly
in scheduling experiments with a large budget for different deadline values (see Figure 6). Note that
the left-most solid curve marked ‘All’ in the Resources axis in Figure 6 represents the aggregation of
all resources.

As the deadline increases, the cost-optimization algorithm predominantly schedules jobs on the
resource R4 (see Figure 6(a)), whereas the cost–time-optimization algorithm scheduled jobs on
resources R4 and R8 (see Figure 6(b)), the first two cheapest resources with the same cost. Therefore,
the application scheduling using the cost–time-optimization algorithm is able to finish earlier compared
to the one scheduled using the cost-optimization algorithm (see Figure 7), and both strategies spend
the same amount of budget processing their jobs (see Figure 8). The completion time for the cost-
optimization scheduling continued to increase with increase of the deadline as the broker allocated
more jobs to resource R4 and less to resource R8. However, the completion time for deadline values
3100 and 3600 was the same as 2600 since the broker allocated jobs to only resource R4. This was not
the case with the cost–time-optimization scheduling since jobs were allocated proportionally to both
resources R4 and R8 and thus minimizing the completion time without spending any extra budget.

A microscopic evaluation of mapping of jobs to different resources under the single user and the
multiple competing users scenarios for the entire execution period can be found in [3].
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Figure 5. The number of Gridlets processed and resources selected for different budget values with a long deadline
value when scheduled using the cost- and cost–time-optimization algorithms: (a) cost optimization with a short
deadline; (b) cost–time optimization and a short deadline; (c) cost optimization with a long deadline; (d) cost–time

optimization with a long deadline.

6. EMPIRICAL EVALUATION—SCHEDULING ON THE WORLD-WIDE GRID TESTBED

The aim of this empirical study is to demonstrate that it is feasible to implement and deploy the
cost–time-optimization algorithm for scheduling applications on real Grid resources. The list of
resources‡ used in application scheduling experiments drawn from the SC2002 Global Grid Testbed

‡The resources used in this empirical study are different from those simulated (reference) resources as they were either
inaccessible due to middleware incompatibility problems (e.g. Globus Monitoring and Discovery System software is not
backwards compatible), or, in some cases, we lost access due to change of access policies.
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Figure 6. The number of Gridlets processed and resources selected for different deadline values with a
high budget when scheduled using the cost- and cost–time-optimization algorithms: (a) resource selection
in cost optimization scheduling when the budget is high; (b) resource selection in cost–time optimization

scheduling when the budget is high.
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Figure 7. The time spent for processing application jobs for different deadline constraints with a large budget when
scheduled using the cost- and cost–time-optimization algorithms.
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Figure 8. The budget spent for processing application jobs for different deadline constraints with a large budget
when scheduled using the cost- and cost–time-optimization algorithms.

Collaboration [39] and those of the WWG [3] is given in Table II. As these distributed resources are
shared among various users and no single user has control over allocation of resources, it is impossible
to carry out repeatable and comparable evaluations as the availability of resources varies with time and
there is no centralized control to create a stable environment. This situation has been noted in many
early works [11,16,35] and also in empirical results presented in the rest of the section.

The cost–time-optimization strategy has been recently implemented through the Gridbus [40]
scheduler, which was developed as a plug-in scheduler to the Nimrod-G broker using its APIs. The API
implements a string-based protocol which allows a program to steer a computation through Nimrod,
but in its own way rather than use the Nimrod scheduling algorithms. This way of testing experimental
optimization strategies does not require Nimrod-G itself to be changed. Here, Nimrod-G performs
resource discovery, selection using Gridbus schedule, and dispatching of jobs to a remote resource,
starting and managing the execution of jobs and gathering the results back at the home node.

The costs shown in the Table II for each node were assigned artificially for this experiment only.
However, the scheduler would find out the cost of each node from the Grid Market Directory [41]
based on the GRACE trading protocols (commodity market models). Secure and remote access to all
these resources is enabled through Globus middleware.

An experiment consisted of scheduling a parameter-sweep application for execution on the various
nodes in our Grid testbed using Nimrod-G. The application used here is calc, a program that calculates
mathematical functions based on the values of two input parameters. The first parameter, length,
is an input to a mathematical function and the second parameter, time base value, indicates the
expected calculation complexity in minutes plus 0–60 minutes. A plan file modeling this application
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Table II. List of Grid resources used in the experimentation.

Node details Cost
Organization (architecture, no. of nodes, hostname) (G$ per CPU sec)

N*Grid Project Korea Linux Cluster, 24 nodes
node1001.gridcenter.or.kr

3

Vrije Universiteit,
Netherlands

Linux Cluster, 144 nodes
(32 available),fs0.das2.cs.vu.nl

2

N*Grid Project Korea Linux Cluster, 16 nodes,
node2001.gridcenter.or.kr

1

IIT, NRC, Canada IBM SP, 4 nodes,
hpc76.ai.iit.nrc.ca

1

Department of Physics,
University of Melbourne,
Australia

Linux Cluster, 10 nodes,
lem.ph.unimelb.edu.au

1

Cambridge University,
U.K.

Linux Cluster, 20 nodes,
herschel.amtp.cam.ac.uk

1

MARCC, University of
Melbourne, Australia

Linux Cluster, 8 nodes,
gnet01.hpc.unimelb.edu.au

1

#Parameter definition
parameter length integer range from 1 to 200 step 1;
parameter time_base_alue integer default 10;
#Task definition
task definition
task main

#Copy necessary executables depending on node type
copy clac.SOS node:calc
#Execute program with parameter values on remote node
node:execute ./calc $length $time_base_value
#Copy results file to use home node with jobname as extension
copy node:output ./output.$jobname

endtask

Figure 9. Plan file for executing calc application using Nimrod-G parameter-specification language.

as a parameter sweep application using the Nimrod-G parameter-specification language is shown in
Figure 9. The first part defines parameters and the second part defines the task that is to be performed
for each job. As the parameter length varies from values 1 to 200 in steps of 1, this plan file would
create 200 jobs with input values from 1 to 200. To execute each job on a Grid resource, Nimrod-G
copies the program executable to a Grid node, executes the program and finally copies the results back
to the user home node and stores results in the output file with jobs number as file extension.

The experiments were carried out on 8 December 2002 between 10 a.m. and 1 p.m. Australian
Eastern Daylight Time. The cost- and cost–time-optimization strategies were tried out and compared.
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Table III. Summary of experiment statistics.

Execution time Budget consumed
Scheduling strategy Start time Completion time (min) (G$)

Cost 10:00 a.m. 11:27 a.m. 87 188
Cost–time 11:40 a.m. 12:08 p.m. 28 277
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Figure 10. Cumulative graph of no. of jobs completed versus time for cost-optimization strategy.

All experiments were started with: deadline = 2 hours, budget = 600 G$. The summary of the results
of these experiments is given in Table III.

The graph in Figure 10 shows cumulatively the number of jobs done against time taken. Here, we
can see that the scheduler has allocated most of the jobs to the machine with the least cost per CPU
cycle (i.e. hpc76.iit.nrc.ca). It does allocate some jobs to another machine (gnet01.hpc.unimelb.edu.au)
so that the deadline can be achieved. Based on the performance of the first node, the scheduler realizes
that it can finish the jobs within the deadline. Hence most of the jobs are allocated to the Canadian
IBM-SP. Thus we see that given a fairly relaxed deadline, as in this case, the scheduler tries to execute
the jobs in the least expensive way using the cost-optimization strategy.
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Figure 11. Cumulative graph of no. of jobs completed versus time for cost–cost-optimization.

The cumulative graph for cost–time optimization in Figure 11 shows a different case. Here,
most of the jobs are executed by the three least expensive machines (lem.ph.unimelb.edu.au,
node2001.gridcenter.or.kr, hpc76.ai.nrc.ca). It can be seen that, as predicted by the simulation,
the scheduler performs time optimization among the machines with the least costs, and hence the
University of Melbourne Physics cluster is allocated the maximum number of jobs as it is the fastest
among the cheapest. However, the scheduler does allocate some jobs in the beginning to other,
more expensive machines as initially two of the cheaper machines (lem.ph.unimelb.edu.au and
hpc76.ai.iit.nrc.ca) are slow to pick up jobs.

In terms of the budget spent during execution, there is a deviation between the results of simulation
and the actual experimental results. Simulation predicts that with a relaxed deadline, the budget spent
should nearly be the same for both the cost–time- and cost-optimization algorithms. However, in
these experiments, the cost–time-optimization method is found to be more expensive than the cost-
optimization method (see Table III). This is due to a huge variation in the availability of some of
the Grid resources during the cost–time-optimization scheduling. For example, the Canadian IBM SP
machine was able to process many jobs during the cost-optimization scheduling experiment, but the
available processing capability had reduced during the cost–time-optimization. This impacted on
the amount of budget that was being spent. If the least expensive machines had performed well in
the beginning, the cost would have remained the same.
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7. SUMMARY AND CONCLUSION

Computational Grids enable the sharing, discovery, selection, and aggregation of geographically
distributed heterogeneous resources for solving large-scale applications. We proposed computational
economy as a metaphor for managing the complexity that is present in the management of distributed
resources and their allocation. It allows allocation of resources depending on the users’ QoS
requirements such as the deadline, budget, and optimization strategy. This paper proposed a new
deadline- and budget-constrained scheduling algorithm called cost–time optimization. We developed
a scheduling simulator using the GridSim toolkit and evaluated the new scheduling algorithm by
comparing its performance and quality of service delivery with the cost-optimization algorithm.

When there are multiple resources with the same cost and capability, the cost–time-optimization
algorithm schedules jobs on them using the time-optimization strategy for the deadline period. From the
results of scheduling experiments for many scenarios with a different combination of deadline and
budget constraints, we observe that applications scheduled using the cost–time-optimization algorithm
are able to complete earlier than those scheduled using the cost-optimization algorithm, without
incurring any extra expenses. This establishes the superiority of the new deadline- and budget-
constrained cost–time-optimization algorithm in scheduling jobs on global Grids. The cost–time-
optimization strategy has also been implemented in the Gridbus scheduler to demonstrate that it is
feasible to implement and deploy the cost–time-optimization algorithm for scheduling applications on
global Grids.

SOFTWARE AVAILABILITY

The GridSim toolkit and the economic Grid broker simulator with source code can be downloaded
from: http://www.gridbus.org/gridsim/.

The Nimrod-G broker can be downloaded from: http://www.csse.monash.edu.au/∼davida/nimrod/.
The Gridbus broker can be downloaded from: http://www.gridbus.org/broker/.
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