
Using the GridSim Toolkit for Enabling Grid Computing Education

Manzur Murshed
Gippsland School of Computing and Information Technology

Monash University, Gippsland Campus
Churchill, VIC 3842, Australia

Manzur.Murshed@infotech.monash.edu.au

Rajkumar Buyya
School of Computer Science and Software Engineering

Monash University, Caulfield Campus
Melbourne, VIC 3145, Australia
rajkumar@csse.monash.edu.au

Keywords: Grid Simulation; Education; Scheduling; Resource
Management.

Abstract
Numerous research groups in universities, research labs, and
industries around the world are now working on Computational
Grids or simply Grids that enable aggregation of distributed
resources for solving large-scale data intensive problems in science,
engineering, and commerce. Several institutions and universities
have started research and teaching programs on Grid computing as
part of their parallel and distributed computing curriculum. The
researchers and students interested in resource management and
scheduling on Grid need a testbed infrastructure for implementing,
testing, and evaluating their ideas. Students often do not have
access to the Grid testbed and even if they have access, the testbed
size is often small, which limits their ability to test ideas for
scalable performance and large-scale evaluation. It is even harder
to explore large-scale application and resource scenarios involving
multiple users in a repeatable and comparable manner due to
dynamic nature of Grid environments. To address these limitations,
we propose the use of simulation techniques for performance
evaluation and advocate the use of a Java-based discrete event
simulation toolkit, called GridSim. The toolkit provides facilities
for modeling and simulating Grid resources (both time and space-
shared high performance computers) and network connectivity with
different capabilities and configurations. We have used GridSim
toolkit to simulate Nimrod-G like Grid resource broker that
supports deadline and budget constrained cost and time
minimization scheduling algorithms.

INTRODUCTION
The proliferation of the Internet and the availability of powerful
computers and high-speed networks as low-cost commodity
components are changing the way we do computing and use
computers today. The interest in coupling of geographically
distributed (computational) resources is also growing for solving
large-scale problems, leading to what is popularly called Grid [2]
and peer-to-peer (P2P) computing [9]. Grids enable the sharing,
selection, and aggregation of suitable computational and data
resources for solving large-scale data intensive problems in science,
engineering, and commerce. A generic view of a Grid computing
environment is shown in Figure 1. A Grid consists of four key
layers of components: fabric, core middleware, user-level
middleware, and applications [4]. The Grid fabric includes
computers (low-end and high end computers including clusters),
networks, scientific instruments, and their resource management
systems. The core Grid middleware provides services that are

essential for securely accessing remote resources uniformly and
transparently. The services they provide include security and access
management, remote job submission, storage, and resource
information. The user-level middleware provides higher-level tools
such as resource brokers, application development and adaptive
runtime environments. Grid applications include those constructed
using Grid libraries or legacy applications that can be Grid-enabled
using user-level middleware tools.

The user essentially interacts with a resource broker that hides the
complexities of Grid computing. The broker discovers resources
that the user can access through Grid information server(s),
negotiate with (Grid-enabled) resources or their agents using
middleware services, map tasks to resources (scheduling), stages
the application and data for processing (deployment), and finally
gathers results. A resource broker is also responsible for monitoring
application execution progress along with managing changes in the
Grid infrastructure and resource failures. There are a number of
projects worldwide actively exploring the development of various
Grid computing system components, services, and applications [4].

In a Grid computing environment, the users, producers (also
called resource owners) and consumers, have different goals,
objectives, strategies, and demand patterns. More importantly both
resources and end-users are geographically distributed with
different time zones. In managing such complex Grid
environments, traditional (centralized) approaches to resource
management that attempt to optimize system-wide measure of
performance cannot be employed. For effective utilization of
distributed resources, smart resource management systems
(decentralized and hierarchical or a combination [6]) are required
and designing such systems is a complex undertaking. Such
approaches do exist in management of resources in human
economies where economic-based market models have been used
in managing decentralization and heterogeneity that is present in
human economies. Therefore, in [6][7][8], we proposed and
explored the usage of an economics based paradigm for managing
resource allocation in Grid computing environments.

The emergence of Grid as a new computing platform for parallel
and distributed computing has encouraged several institutions and
universities around the world to encourage research and teaching
programs of Grid computing as part of their curriculum especially
at graduate level courses. Some of the institutions teaching Grid
computing subjects include, the University of Minnesota [10], the
University of Virginia [13], the University of Southern California
[14], and University of Leiden in the Netherlands [15]. A faculty
teaching Grid computing at the University of Minnesota has shared
his teaching experience in a recent article [11] that appeared in the
IEEE Distributed Systems online magazine.

Resource Broker

Resource Broker

Application

Figure 1: A generic view of a Grid computing environment.

The researchers and students investigating resource management
and scheduling in Grid computing environments need a testbed
infrastructure for implementing, testing, and evaluating their new
or existing scheduling algorithms. For most, who do not have
access to ready-to-use testbed infrastructures, building them is
expensive and time consuming. Even with real testbeds, evaluating
scalability and performance of scheduling mechanisms for various
usage and resource scenarios is hard to achieve. It impossible to
perform evaluation in a repeatable and comparable manner as the
availability of testbed resources varies from time to time. To
address these limitations, we propose the use of simulation
techniques for performance evaluation and advocate the use of a
Java-based discrete event Grid simulation toolkit, called GridSim
[20]. It is interesting to note that the educators of cluster [12] and
grid computing [11] have recognized the importance of simulation
techniques and tools for modeling, simulation, and evaluation.

MOTIVATION FOR SIMULATION
The success of a peer-to-peer Grid largely depends on
implementing and testing a large number of possible economic
models for managing resources under various constraints [6]. It is
also equally important to analyze various scheduling algorithms in
obtaining certain local goals. No doubt that implementing feasible
economic models and efficient scheduling algorithms in the real
Grid test-bed will always remain the ultimate goal. The motivation
for using simulation instead of directly using the Grid test-bed,
especially in analyzing models and algorithms in the early stages,
can be drawn from the following factors:
• Setting up a Grid testbed is expensive, resource intensive, and

time consuming. Even if one is set up, it is mostly limited to
some local area environments.

• Using a real testbed would incur real cost, as all the available
resources will then be working under a true economic model.
As analyzing new models and algorithms requires a large
number of tests involving as many resources as available, the
cost of such testing would soon become a cost burden for
designing new models and algorithms. Using simulation

instead of real test-bed would certainly eliminate a large
portion of the above cost burden.

• Using a real testbed with real jobs is time consuming as well.
Hours of real job time can be simulated in seconds provided
the simulation is having sufficient processor power.

• The real test bed does not provide a repeatable and
controllable environment for experimentation and evaluation
of scheduling strategies.

• Simulation works well, without making the analysis
mechanism unnecessary complex, by avoiding the overhead of
co-ordination of real resources.

• Simulation is also effective in working with very large
hypothetical problems that would otherwise require
involvement of a large number of active users, which is very
hard to coordinate and build at a large-scale research
environment for investigation purposes.

• Simulation allows analyzing existing as well as new economic
models and scheduling algorithms in the classroom.

GRID SIMULATION TOOLS
While there exist a large body of knowledge and tools: simulation

languages (e.g., Parsec [16]), simulation libraries (SimJava [1]),
and application specific simulators (e.g., OMNet++ network
simulator [21]), there exist very few tools for simulating Grid
computing environments. The notable ones are: Bricks [17],
MicroGrid [19], Simgrid [18], and our GridSim [20]. The Bricks
system is useful simulating client-server like global computing
multi-user system, but focuses on centralized overall system
performance and service rates. The MicroGrid system is a Globus
emulator and expects applications and scheduler to be constructed
using Globus toolkit and evaluation of large-scale Grid scenarios
and configuration takes huge amount of real-time. The Simgrid
supports modeling of resources that are time-shared and restricted
to single user environment. It is targeted for developing schedulers
that support application execution time span minimization. Unlike
Simgrid, the GridSim toolkit supports both time and space-share
resources along with multiuser environment. It is targeted not only
for time span minimization schedulers, but also for those that

support deadline and budget constrained scheduling algorithms
driven by market-based economic models.

We believe that GridSim’s ability to support modeling of uni- or
multi-processor, shared- or distributed-memory, machines with
time- or space-shared resource management appeals to wide range
of scheduler designers. Its Java-based design makes it portable and
available on all computational platforms. This feature appeals to
educators and students since Java has emerged as one of the most
popular programming language for network computing.

Salient features of our object-oriented GridSim toolkit include the
following:
• It allows modeling of heterogeneous types of resources.
• Resources can be modeled operating under space- or time-

shared mode.
• Resource capability can be defined (in the form of MIPS as

per SPEC benchmark).
• Resources can be located in any time zone.
• Weekends and holidays can be mapped depending on

resource’s local time to model non-Grid (local) workload.
• Resources can be booked for advance reservation.
• Applications with different parallel application models can be

simulated.
• Application tasks can be heterogeneous and they can be CPU

and/or I/O intensive.
• It does not limit number of application tasks that can be

submitted to a resource.
• Multiple user entities can submit tasks for execution

simultaneously in the same resource, which may be time-
shared or space-shared. This feature helps in building
schedulers that can use different market-driven economic
models for selecting services competitively.

• Network speed between resources can be specified.
• It supports simulation of both static and dynamic schedulers.
• Statistics of all or selected operations can be recorded and they

can be analyzed using GridSim statistics analysis methods.
Depending on the type of resources modeled, GridSim can

simulate various types of parallel and distributed computing
infrastructures such as clusters, Grids, and peer-to-peer systems. In
case of clusters, all the resources (called nodes) are modeled with a
single time zone. Nodes can be single processor machines or
Symmetric-Multi-Processors (SMPs), managed using time-shared
operating systems, interconnected using fairly high-speed network,
and resources can be put in dedicated mode. In the case of Grids,
the nodes are distributed in a variety of time zones that can be
single processors, SMPs, or clusters, managed by time or space-
shared resource managers.

BUILDING SIMULATIONS WITH GRIDSIM
The Java-based GridSim discrete event simulation toolkit provides
Java classes that represent entities essential for application,
resource modeling, scheduling of jobs to resources, and their
execution along with management. A schematic representation of
interaction between GridSim entities during simulator execution is
shown in Figure 2. The process of resource and application
modeling for developing Grid schedulers/brokers is discussed
below.

Resource Modeling
In GridSim toolkit, we can create CPUs (also called Processing
Elements (PEs)) with different MIPS (Million Instructions Per
Second) or SPEC-like ratings. Then, one or more PEs can be put
together to create a machine (a single CPU/SMP node). Such one
or more machines can be put together to create a Grid resource. The
resulting Grid resource can be a single processor, shared memory
multiprocessors (SMP), or a distributed memory cluster of
computers. These Grid resources can be managed by time-shared or
space shared scheduling systems depending on type of the resource.
Generally, a single PE or SMP type Grid resource is managed by
time-shared operating systems using round-robin scheduling policy
and a cluster-like Grid resource is managed by space-shared Q-
schedulers using different scheduling policies such as first-come-
first-served (FIFO), back filling, shortest-job-first (SJF), and so on.

For every Grid resource, the non-Grid (local) workload is
estimated based on typically observed load conditions as well as
the time zone of the resource. The network communication speed
between user and resources are defined in terms of data transfer
baud rate. When a resource entity is created, it registers resource
information and contact details with the Grid Information Service
(GIS) entity. This resource registration process is similar to GRIS
(Grid Resource Information Server) registering with GIIS (Grid
Index Information Server) in Globus system. The GIS can then be
queried for list of resource in a given Grid domain to get resource
handles that can be used to query resources directly for their
capabilities, costs, and other configurations.

Application Modeling
GridSim does not define any specific application model explicitly.
It is up to the developers (of schedulers and resource brokers) to
define them. We have experimented with task-farming application
model and we believe that other parallel application models such as
process parallelism, DAGs, divide and conquer, etc., described in
[3], can also be modeled and simulated using GridSim.

In GridSim, each independent task can be heterogeneous in terms
of processing time and input files size. Such tasks/jobs can be
created and their requirements can be defined through Gridlet
objects. A Gridlet is a tiny GridApp that contains all information
related to jobs and job execution management details such as jobs
processing requirements, expressed in MIPS, disk I/O operations,
the size of input files, etc. that help in computing execution time of
remote resource and the size of output files. The GridSim toolkit
supports a wide range of Gridlet management protocols and
services that allows one to map or assign a Gridlet to a resource for
execution and manage the same through out its life cycle.

Each Grid user can be modeled with different
characteristics/requirements such as:
• Types of job created e.g., job execution time, number of

parametric replications etc.;
• Scheduling policy e.g., cost, time, or both minimization;
• Activity rate e.g., how often it creates new job;
• Time zone; and
• D- and B-factors, measured in the range [0,1], express

deadline and budget affordability of the user.

Figure 2: A flow diagram in GridSim based simulations.
D- factor close to 1 signifies that the user is willing to set deadline

of a job as long as required even when only the few slowest
resources are available for the job. Similarly B-factor close to 1
signifies that the user is capable of spending as much money as
required even when only the few expensive resources are available
for the job. These factors are basically useful for determining
deadline and budget values for a given scenario at runtime. Instead,
users can also explicitly specify values for deadline and budget
constraints similar to the way it is currently done in Nimrod-G.

Steps for Simulating Application Scheduling
In this section we present high-level steps, with sample code clips,
to demonstrate how GridSim can be used to simulate a Grid
environment to analyze some application scheduling algorithms:
• First, we need to create Grid resources of different

capability/speed like those in the real environment at different
time zones and different policies (like time- or space-shared
resources in World-Wide Grid (WWG) testbed). We also need
to create users with different requirements. A sample code,
serving the above purposes, is given in Figure 3.

• Second, we need to model applications by creating a number
of Gridlets (that appear similar to Nimrod-G jobs) and define
all parameters associated with jobs as shown in Figure 4. The
Gridlets can be grouped together depending on application
model for processing.

• Finally, we need to implement resource brokers as shown in
Figure 5. First, inquire Grid Information Service (GIS), then
inquire for resource capability including cost, and then
depending on scheduling heuristics, strategy, or algorithms
assign Gridlets to resources for execution. The scheduling
policies can be systems-centric like those implemented in
many Grid systems such as Condor-G or users-centric like
Nimrod-G broker quality of services (QoS) and market-based

economic models driven Deadline and Budget Constrained
(DBC) time, cost, and both optimizations and policies [7].

Figure 3: A sample code segment for creating Grid resource and
user entities in GridSim.

Tasks

Job
Scheduler

User #i Broker #i Output

Input

Output

Input

Resource #j

Task In Queue

Task Out Queue
Process
Queue

The Internet

Output Input

Resource
List

Directory

 public static void CreateSampleGridEnvironement(int no_of_users, int no_of_resources, double B_factor,
 double D_factor, int policy, double how_long, double
 seed) {
 Calendar now = Calendar.getInstance();
 GridSimController.InitSimulation(no_of_users,
 no_of_resources, now);
 // Create Resources
 for(int i=0; i<no_of_resources; i++) {
 // Create PEs
 PEList peList = new PEList();
 for(int j=0; j<(i*1+1); j++)
 peList.add(new PE(0, 100));
 // Create machine list
 MachineList mList = new MachineList();
 mList.add(new Machine(0, peList,
 ResourceCharacteristics.TIME_SHARED));
 // Create a resource containing machines
 ResourceCharacteristics resource = new
 ResourceCharacteristics("INTEL", "Linux",
 mList, ResourceCharacteristics.TIME_SHARED, 0.0,
 i*0.5+1.0);
 LinkedList Weekends = new LinkedList();
 Weekends.add(new Integer(Calendar.SATURDAY));
 Weekends.add(new Integer(Calendar.SUNDAY));
 LinkedList Holidays = new LinkedList();
 // no holiday is set!
 // Setup resource as simulated entity with a name

 Sim_system.add(new GridResource("Resource_"+i,
 28000.0, seed, resource, 0.0, 0.0, 0.0, Weekends,
 Holidays));
 }
 // Create Users
 for(int i=0; i<no_of_users; i++)
 Sim_system.add(new UserEntity("User_"+i, 28000.0,
 how_long, seed, B_factor, D_factor, policy,
 60.0*60));
 // Start Simulation
G idSi C t ll St tSi l ti ()

Figure 4: Gridlet method in GridSim.
Within such GridSim simulations, we can create multiple user

entities with their own applications and requirements for
scheduling on the same groups of resources. This can help in
developing brokers like in the real world who need to share and
compete for resources depending on their requirements and budget
and deadline constraints. Having this ability to put brokers in
competition enabled design and evaluation of market-based
economic models and corresponding scheduling algorithms to
create a Grid marketplace as discussed in [9].

Figure 5: A sample code segment for creating a Grid resource
broker in GridSim.

SIMULATION RESULTS Gridlet gl = new Gridlet(user_id, Gridlet_id, Gridlet_length, GridletFileSize, GridletOutputSize);

Using GridSim toolkit we simulated the deadline and budget
constrained cost-optimisation scheduling algorithm [7] that
attempts to complete an experiment of a large number of jobs as
economically as possible within the deadline. High-level steps of
this adaptive scheduling algorithm are discussed below:

1. RESOURCE DISCOVERY: Identify resources that can be
used in this execution with their capability through Grid
Information Service.

2. RESOURCE TRADING: Identify cost of each of the
resources in terms of server cost per second and capability
to be delivered per cost-unit.

3. SORT resources by increasing order of cost. class Broker extends GridSim { private Sim_port user;
 private Experiment experiment;
 private LinkedList ResIDList;
 private LinkedList BrokerResourceList;

 public Broker(String name, double baud_rate) {
 super(name, baud_rate);
 user = new Sim_port("user");
 add_port(user);
 GridletDispatched = 0;
 GridletReturned = 0;
 Expenses = 0.0;
 MaxGridletPerPE = 2;
 }

 … // Gridlet management code

 public void body() {
 … // Event handling code

 // RESOURCE DISCOVERY
 sim_schedule(output, GridSimTags.SCHEDULE_NOW,
 GridSimTags.RESOURCE_LIST, new IO_data(new
 Integer(get_id()), 0,
 GridSim.GridInformationServiceEntityId()));
 sim_get_next(ev); // Waiting for a response
 ResIDList = (LinkedList) ev.get_data();
 // extracting resources available in Grid

 … // RESOURCE TRADING and SORTING

 // SCHEDULING
 while (glFinishedList.size() <
 experiment.GetGridletList().size()) {
 if((Sim_system.clock()>experiment.GetDeadline())
 || (Expenses > experiment.GetBudget()))
 break;
 scheduled_count = ScheduleAdviser();
 dispatched_count = Dispatcher();
 received_count = Receiver();

 // Heurisitics for deciding hold condition
 if(dispatched<=0 && received<=0 &&
 glUnfinishedList.size()>0) {
 double deadline_left = experiment.GetDeadline()
 - Sim_system.clock();
 sim_hold(Math.max(deadline_left*0.01, 1.0));
 }
 }
 }

// C d f t l h d li li

4. SCHEDULING: Repeat while there exists unprocessed
jobs in application job list with a delay of scheduling event
period or occurrence of an event

[SCHEDULE ADVISOR with Policy]
a. For each resource predict and establish job

consumption rate through measure and
extrapolation.

b. For each resource based on its job consumption
rate, predict and establish number of jobs a
resource can consume by application deadline.

c. For each resource in order
i. If the number of jobs currently

assigned is less than predicated number
of jobs that a resource can consume,
assign more jobs from unassigned job
queue or from most expensive
machines based on job state and
feasibility.

ii. Else if a resource has excess jobs that it
can complete, take away those jobs
from a resource and move to
unassigned job queue.

[DISPATCHER with Policy]
d. The dispatcher takes care of submission of jobs

to remote machines with submission and
resource policy and constraints depending on
resource type (time or space shared).

We simulated a Grid with independent users as many as 21 that
are competing for resources as many as 25 with cost variation using
normal distribution from 10 units per second (G$/sec.) to 20
G$/sec. Each user application composed of 20 jobs with variation
of ±2 with random submission. Each job was modelled to 50 time
units on a standard machine. The resources capability rating varied
with normal distribution from 0.5 to 1.5 (with 1 for standard
machine). For the sake of simplicity in analysing the result, we
assumed all the users and resources stochastically similar within the
respective groups with very small variances in their characteristics.

50 90

13
0

17
0

21
0 50

170
0

20

40

60

80

100

Job
completion

rate (%)

B-factor (%)

D-factor (%)

Users=21, Resources=25, Optimization: COST

1 5 9

13 17

5

150

20

40

60

80

100

Job
completion

rate (%)

Users

Resources

B-factor = D-factor = 110%, Optimization: COST

(a) (d)

(b) (e)

(c) (f)
Figure 6: Job completion rate (a), time utilization (b), and budget utilization (c) of our
COST_OPTIMIZATION scheduling algorithm simulated with a fixed number of users
and resources while both the B- and D-factors are varied. Job completion rate (d), time
utilization (e), and budget utilization (f) of the same algorithm simulated with fixed B-
and D-factors while both the number of users and resources are varied.

50 90

13
0

17
0

21
0 50

1500

20

40

60

80

100

Time
Utilization (%)

B-factor (%)

D-factor (%)

Users=21, Resources=25, Optimization: COST

1 5 9

13 17

5

150

20

40

60

80

100

Time
Utilization (%)

Users

Resources

B-factor = D-factor = 110%, Optimization: COST

1 5 9

13 17

5

150

5

10

15

20

25

Budget
Utilization (%)

Users

Resources

B-factor = D-factor = 110%, Optimization: COST

50 90

13
0

17
0

21
0 50

170
0

5

10

15

20

Budget
Utilization (%)

B-factor (%)

D-factor (%)

Users=21, Resources=25, Optimization: COST

Some of the results obtained from the experiment are plotted in
Figure 6. Job completion rate, time utilization, and budget
utilization are plotted in Figure 6(a)-(c) respectively, for the
maximum number of users and resources used in the experiment,
against the B- and D-factors that are varied from 0.5 to 2.5. These
figures show that both the job completion rate and the time
utilization are linearly proportional to only the D-factor that
determines the deadline. On the contrary, the budget utilization
varies with both the B- and D-factors. For a fixed B-factor, the
budget utilization increases linearly with the D-factor; but for a
fixed D-factor, decreases with the B-factor linearly, when the D-
factor is low, and logarithmically, when the D-factor is reasonably
high.

In Figure 6(d)-(f), we plotted job completion rate, time utilization,
and budget utilization, for fixed (110%) B- and D-factors, against
the number of users and resources that are varied in the ranges 1 to
21 and 1 to 25 respectively. These figures show that the job

completion rate decreases with the increase in the number of users
due to the obvious reason of competition. But it is also observed
that both the time and budget utilizations also decrease with the
increase in the number of users. This observation is against the
obvious expectation that utilization of time and budget should
increase with the competition. However, this unexpected result can
be easily explained from the fact that both the time and budget
utilizations were calculated only for successful jobs and when the
job utilization is low, successful jobs, in reality, could see relatively
under utilized resources.

SUMMARY AND CONCLUSION
In this paper we discussed an object oriented Grid simulation
toolkit called GridSim for application scheduling simulations in
Grid and P2P computing environments. The GridSim toolkit allows
creation of time- and space-shared resources with different
capabilities, time zones, and configurations. It supports different

parallel application models that can be mapped to resources for
execution by developing simulated application schedulers. We
discussed architecture and components of GridSim toolkit along
with steps involved in creating GridSim based application-
scheduling simulators.

As we have developed Nimrod-G like Grid resource broker using
GridSim and evaluated scheduling algorithms based on deadline
and budget based constraints. This gave us ability to test our
application scheduling policies with different Grid configurations
such as varying number of resources, users, and requirements. The
results are promising and therefore GridSim toolkit can be used by
scheduling researchers for creating application model and perform
design and evaluation of their own scheduling algorithms.

We believe that our implementation of GridSim toolkit in Java is
an important move since Java-based applications are fully portable
across all platforms. Java is one of the most popular programming
languages for network computing and many easy-to-use and
friendly development environments are available. Notably, the java
virtual machine (JVM) is available for single, multiprocessor
shared or distributed machines and our GridSim is multithread,
which means our system is highly scalable and therefore, large-
scale simulations can be performed easily. Therefore, we believe
that GridSim toolkit can play an important role in enhancing Grid
computing research and education.

REFERENCES
[1] F. Howell and R. McNab, SimJava: A Discrete Event

Simulation Package For Java With Applications In Computer
Systems Modelling, First International Conference on Web-
based Modelling and Simulation, San Diego, CA, Society for
Computer Simulation, Jan 1998.

[2] Foster and C. Kesselman (editors), The Grid: Blueprint for a
Future Computing Infrastructure, Morgan Kaufmann
Publishers, USA, 1999.

[3] L. Silva and R. Buyya, Parallel Programming Paradigms,
Chapter 2 in High Performance Cluster Computing:
Programming and Applications (Vol. 2), Prentice Hall, NJ,
USA, 1998.

[4] M. Baker, R. Buyya, D. Laforenza, The Grid: International
Efforts in Global Computing, Intl. Conference on Advances
in Infrastructure for Electronic Business, Science, and
Education on the Internet, Italy, 2000.

[5] R. Buyya, D. Abramson and J. Giddy, Nimrod/G: An
Architecture for a Resource Management and Scheduling
System in a Global Computational Grid, 4th Intl. Conf. on
High Performance Computing in Asia-Pacific Region (HPC
Asia 2000), China.

[6] R. Buyya, D. Abramson and J. Giddy, Economy Driven
Resource Management Architecture for Computational Power
Grids, Intl. Conf. on Parallel and Distributed Processing
Techniques and Applications (PDPTA 2000), USA.

[7] R. Buyya, J. Giddy, D. Abramson, An Evaluation of
Economy-based Resource Trading and Scheduling on
Computational Power Grids for Parameter Sweep
Applications, The Second Workshop on Active Middleware
Services (AMS 2000), In conjunction with HPDC 2001,
August 1, 2000, Pittsburgh, USA (Kluwer Academic Press).

[8] R. Buyya, D. Abramson, and J. Giddy, An Economy Grid
Architecture for Service-Oriented Grid Computing, 10th
IEEE International Heterogeneous Computing Workshop
(HCW 2001), with IPDPS 2001, SF, California, USA, April
2001.

[9] R. Buyya, H. Stockinger, J. Giddy, and D. Abramson,
Economic Models for Management of Resources in Peer-to-
Peer and Grid Computing, Proceedings of International
Conference on Commercial Applications for High-
Performance Computing, August 20-24, 2001, Denver,
Colorado, USA.

[10] J. Weissman, CS 5980: Metacomputing, University of
Minnesota, Minneapolis, USA, Spring 2000, http://www-
users.cs.umn.edu/~jon/Grids/

[11] J. Weissman, Grids in the Classroom, IEEE Distributed
Systems Online, Volume 1, No. 3, 2000,
http://www.computer.org/dsonline/archives/ds300/ds3eduprin
t.htm

[12] Apon, R. Buyya, H. Jin, and J. Mache, Cluster Computing in
the Classroom: Topics, Guidelines, and Experiences,
Proceedings of the First IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGrid
2001), Brisbane, Australia, May 15-18, 2001.

[13] M. Humphrey, CS 851: Grid Computing, Department of
Computer Science, University of Virginia,
http://www.cs.virginia.edu/~humphrey/GridComputingClass/
, 2000.

[14] A. Chervenak, Introduction to Grid Computing, Information
Sciences Institute, University of Southern California,
http://www.isi.edu/~annc/classes/grid/cs599.html, 2000.

[15] H. Bos, L. Wolters, and H. Wijshoff, Seminarium Grid
Computing, University of Leiden, The Netherlands, 2001.
http://www.liacs.nl/~herbertb/courses/grid/

[16] R. Bagrodia, R. Meyer, M. Takai, Y. Chen, X. Zeng, J.
Martin, B. Park, H. Song, Parsec: A Parallel Simulation
Environment for Complex Systems, Vol. 31(10), IEEE
Computer, October 1998.

[17] K. Aida, A. Takefusa, H. Nakada, S. Matsuoka, S. Sekiguchi,
and U. Nagashima, Performance evaluation model for
scheduling in a global computing system, The International
Journal of High Performance Computing Applications, Vol.
14, No. 3, 2000.

[18] H. Casanova, SimGrid: A Toolkit for the Simulation of
Application Scheduling, Proceedings of the First IEEE/ACM
International Symposium on Cluster Computing and the Grid
(CCGrid 2001), May 15-18, 2001, Brisbane, Australia.

[19] H. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K.
Taura and A. Chien, The MicroGrid: a Scientific Tool for
Modeling Computational Grids, Proceedings of IEEE
Supercomputing (SC 2000), Nov. 2000, Dallas, USA.

[20] M. Murshed, R. Buyya, D. Abramson, GridSim: A Toolkit for
the Modeling and Simulation of Global Grids, Technical
Report, Monash-CSSE 2001/102, Monash University,
Australia, November 2001.

[21] Varga, The OMNeT++ Discrete Event Simulation System,
Proceedings of the European Simulation Multiconference
(ESM'2001). June 6-9, 2001. Prague, Czech Republic.

	Manzur.Murshed@infotech.monash.edu.au
	Rajkumar Buyya

	Abstract
	INTRODUCTION
	MOTIVATION FOR SIMULATION
	GRID SIMULATION TOOLS
	BUILDING SIMULATIONS WITH GRIDSIM
	Resource Modeling
	Application Modeling
	Steps for Simulating Application Scheduling

	SIMULATION RESULTS
	SUMMARY AND CONCLUSION
	REFERENCES

