Tools automate computer sharing

By Ted Smalley Bowen, Technology Research News

How many economists does it take to inaccurately forecast a recession?

To answer that impertinent puzzler, you might try tapping into a grid of computing resources to coordinate those of their computers to cooperative processing via the Internet. The University of California at Berkeley, for example, coordinating example of grid computing one popular scientific example of grid computing -- an Internet community application that uses background or downtime resources from thousands of systems, many of them home PCs, to analyze telescope data for the search for extraterrestrial intelligence (SETI) project.

A group of researchers at Monash University in Australia and the European Council For Nuclear Research (CERN) in Switzerland has proposed a scheme that has the potential to increase the reach of grid computing by applying traditional economic models - from barter to monopoly - to manage grid resource supply and demand.

The researchers have built a software architecture and mapped out policies for managing grid computing resources; these could also work with peer-to-peer applications, according to Rajkumar Buyya, a graduate student in the computer science department at Monash University. The methods could facilitate a broad range of computing services applications, said Buyya.

“They can be used in executing science, engineering, industrial, and commercial applications such as drug design, automobile design, crash simulation, aerospace modeling, high energy physics, astrophysics, earth modeling, electronic CAD, ray tracing, data mining, financial modeling, and so on,” he said.

Although peer-to-peer and grid computing are not new, there hasn’t been an overarching scheme for handling the massive amount of bargaining and staging required to carry out such on-demand jobs with reliable levels of quality, and pricing to match, Buyya said.

The researchers’ scheme is aiming to fill that gap, he said. “We are focusing on the use of economics as a metaphor for management of resources and scheduling in peer-to-peer and grid computing, as... a mechanism for regulating supply-and-demand for resources depending on users’ requirements.”

The researchers scheme allows consumers and computing service providers to connect and hammer out pricing and service levels. It would allow the parties to agree on one price for quick delivery of services during times of peak demand, and another for less urgent delivery, for example.

Resource brokering/sharing tools analogous to Napster will eventually handle the trade in access to computers, content, scientific and technical instruments, databases, and software, Buyya said.

“We have new technologies, the users need not own expensive [computer] resources. Resource brokers [can] lease services that are necessary to meet... requirements such as deadline, spending limit, and importance of the work. Our technologies help both resource consumers and providers to manage the whole scenario automatically,” he said.

In a grid computing scheme, consumers usually enlist brokers to procure computing resources for a given project. Grid service providers make their systems available by running specialized applications and resource trading services. A grid market directory links brokers and providers.

The researchers’ grid architecture goes a step further, using standard economic pricing models, such as commodity market, posted price, bargaining, tendering and auctions, to hash out the terms of broker-provider deals.

The researchers’ tools, Nimrod-G Computational Resource Broker, DataGrid broker, Grid Trading Services, Grid Market Directory, and Grid Bank, work with existing grid middleware like the Globus toolkit.
The researchers have tested the tools on the World Wide Grid (WWG), a global network testbed of different types of computers including PCs, workstations and servers.

Two types of tests simulated brokering, scheduling and execution computing jobs, and emphasized speed and cost, respectively. The tests used a commodity market pricing, or fixed-price model. One application scheduled computations needed for a drug design application that screened molecules, he said.

The researchers used Nimrod-G to aggregate the systems resources as they were needed. “The resource broker automatically leases necessary resources competitively, depending on the [users’] requirements, such as deadline and budget constraints,” Buyya said.

Using a more common systems-centric approach would make it more difficult to provide service levels that can vary from user to user and application to application, depending on the importance of the problem at the time of execution, he said.

As the tools get established, they could be deployed for use in production systems such as Australian Partnership for Advanced Computing (APAC) and Victorian Partnership for Advance Computing (VPAC) resources for routine use, said Buyya. “Depending on market forces, we believe that it will take two or three years for widespread use of economic models for Grid and [peer-to-peer] computing,” said Buyya.

The researchers plan next to test the methods’ scalability, improve scheduling algorithms, and update the Nimrod/G broker software to handle more sophisticated task allocation and management, Buyya said.

The study makes a good start at hashing out ways in which disparate computing resources can be made available and consumed, according to Lee McKnight, a professor at Tufts University’s Fletcher School of Law & Diplomacy.

The researchers’ contribution is “imagining and testing a standards or protocol-based framework through which computing resources may be accessed or shared on the basis of one of a variety of different models for brokering or trading resources,” he said.

But the way the researchers used the models is artificially limited to narrowly defined grid computing resources and doesn’t address networked computing services like application hosting and bandwidth brokering, and quality controls like service level agreements, said McKnight.

The work “is but one element of a yet-to-be-defined economic model of pervasive computing and communications environments,” he said. “The ‘data economy’ as the authors call it will ultimately include both [peer-to-peer] and a variety of other interaction and resource access modes.”

Buyya’s research colleagues were Jonathan Giddy and David Abramson of Monash University and Heinz Stockinger of CERN.

The work was funded by the Australian Government, Monash University, Cooperative Research Center (CRC) for the Enterprise Distributed Systems Technology (DSTC), and the Institute of Electrical and Electronics Engineers (IEEE) Computer Society. Heinz Stokinger’s work was funded by CERN and the European Union.

The researchers are scheduled to present their work at the International Society for Optical Engineering (SPIE) International Symposium on The Convergence of Information Technologies and Communications (ITCom 2001) in Denver, August 20-24, 2001.

Timeline: 2-3 years
Funding: nbsp; Government, University
TRN Categories: Internet
Story Type: News