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Abstract— This paper proposes a coordinated load manage-
ment protocol in Peer-to-Peer (P2P) coupled federated Grid
systems. The participants in the system such as the resource
providers and the consumers who belong to multiple control
domains work together to enable a coordinated federation. The
coordinated load management protocol embeds a logical spatial
index over a Distributed Hash Table (DHT) space as regards
to management of complex coordination objects. The DHT
based space serves as a decentralised blackboard system, which
facilitates autonomous participants with respect to coordinating
their activities. We show that our coordination protocol involves
low overhead with respect to number of messages generated, and
has scalability properties.

Our coordinated load management protocol is in particular
applicable for resource brokering services of computational grids
and PlanetLab. Resource brokering services are the main compo-
nents that control the way applications are scheduled, managed
and allocated in a distributed, heterogeneous and dynamic Grid
computing environment. Existing Grid computing systems such
as resource brokers, e-Science application work-flow schedulers
operate in tandem but still lack a coordination mechanism that
can lead to efficient application schedules across distributed re-
sources. Further, lack of coordination exacerbates the utilisation
of various resources (such as computing cycles and network
bandwidth). The feasibility of the proposed coordinated load
management protocol is studied through extensive simulations.

I. I NTRODUCTION

Distributed systems including computational grids, P2P sys-
tems, Planetlab, cross-company workflows involve participants
who are topologically and administratively distributed over
various control domains in the Internet. Participants in these
resource sharing environments can be organised based on
a federated model. In a federated orgainisation [5], [10],
[19], [3], [15] every autonomous provider pools his resources
together for common benefit of the community. As a result,
every participant gets access to much larger pool of resources.
Further, federated organisation aids in coping with the bursty
requests during high demand period without having the need
to maintain or administer the computing, network and storage
resources. Federated systems need effective resource man-
agement mechanisms that can: (i) coordinate resource usage
across the system thereby leading to load balance across
the resources; (ii) scale gracefully to a large number of
participants; and (iii) adapt to dynamic resource and network
conditions.

A. Tragedy of Commons

Distributed resource sharing systems such as computational
grids and PlanetLab often exhibit the classical economics
paradox called “tragedy of commons” during period of high
demand. Study undertaken in [10] confirms that PlanetLab
environment often experiences the problem of flash crowd
where a growing number of users simultaneously request
“slices” on arbitrarily selected nodes to host their distributed
systems experiments. Such bursty behaviour of users often lead
to sub-optimal system performance. Under current PlanetLab
resource management setting nodes schedule the user requests
locally without any provision to discover the usage status of
other nodes in the system or coordinate the local resource
usage across the system. Similarly, users have no means to co-
ordinate their resource demands with other users in the system
leading to over-utilisation of particular set of nodes. Further,
the users who can not successfully finish their experiments
due to competing or conflicting requests in the system tend to
retry their experiments which further aggravate the situation.

Another, motivating example is the way multiple Grid
brokers schedule the jobs on distributed Grid resources. Ma-
jority of existing approaches to Grid scheduling are non-
coordinated. Brokers such as Nimrod-G [1], Condor-G [9]
perform scheduling related activities independent of the other
brokers in the system. They directly submit their applications
to the underlying resourceswithout taking into account the
current load, priorities, utilization scenarios of other applica-
tion level schedulers. Clearly, this leads to over-utilization or
a bottleneck on some valuable resources while leaving others
largely underutilized. Furthermore, these brokers do not have a
coordination mechanism and this exacerbates the load sharing
and utilization problems of distributed resources becausesub-
optimal schedules are likely to occur.

B. Centralised Approaches

One of the possible ways to solve coordination problem
among distributed brokers or users has been to host a coordi-
nator service on a centralised machine [12], [18], [25], wherein
every consumer is required to submit his demands to the
coordinator (similar to Bellagio system). Similarly, resource
providers update their resource usage status periodicallywith



the coordinator. The centralised resource allocation coordina-
tor performs system wide load-distribution primarily driven by
resource demand and availability. However, this approach has
several design limitations including: (i) single point of failure;
(ii) lacks scalability; (iii) high network communication cost
at links leading to the coordinator (i.e. network bottleneck,
congestion); and (iv) computational power required to serve a
large number of participants.

C. Unstructured Decentralised Approaches

The coordinated scheduling protocols adopted by NASA-
Scheduler [21] and Condor-Flock P2P [7] are based on general
broadcast and limited broadcast communication mechanism
respectively. Similarly, scheduling coordination in Tycoon [16]
is based on a decentralized and isolated auction mechanism,
where a user can end up bidding across every auction in
the system (broadcast messaging). OurGrid [3] system coor-
dinates load-information among the sites based on a complete
broadcast messaging approach. Specifically, OurGrid utilises
JXTA search [14] primitives as regards to resource discovery
and message routing. Hence, these unstructured decentralised
approaches have the following serious imitations: (i) high
network overhead; and (ii) scalability problems.

D. Proposed Approach: Structured Decentralised

In this work, we propose that the role of the centralised
coordinator be distributed among a set of machines based on
a P2P network model. New generation P2P routing substrate
such as the DHTs [22], [20] can be utilised for efficient man-
agement of such decentralised coordination network. DHTs are
inherently self-organising, fault-tolerant and scalable. Further,
DHT services are light-weight and hence, do not warrant an
expensive hardware infrastructure.

Specifically, we advocate organising resource brokers (and
users in case of PlanetLab) and distributed resources basedon
a DHT overlay. In the proposed approach resource brokers post
their resource demands by injecting aResource Claimobject
into the DHT-based decentralised coordination space, while
resource providers update the resource supply by injecting
a Resource Ticketobject (similar terminologies have been used
by the Sharp [10] and Shirako [15] system). These objects are
mapped to the DHT-based coordination services using a spatial
hashing technique. The details on spatial hashing technique
and object composition are discussed in Section V. Decen-
tralised coordination space is managed by a software service (a
component of Grid broker service) called coordination service.
It undertakes activities related to decentralised load-balancing,
coordination space management etc.

A coordination service on a DHT overlay is made responsi-
ble for matching the published resource tickets to subscribed
resource claims such that the resource ticket issuers are not
overloaded. Resource tickets and resource claims are mapped
to the coordination space based on the distributed spatial
hashing technique [24]. Every coordination service in the
system owns a part of the coordination space governed by
the overlay’s hashing function (such as SHA-1). In this way,

the responsibility of load-distribution and coordinationis del-
egated to set of machines. The actual number of machines and
their respective coordination load is governed by the spatial
index’s load-balancing capability. Note that, both resource
claim and resource ticket objects have their extent ind-
dimensional space.
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Fig. 1. Coordinated load management based on a P2P space. Userspost
their resource demands on the P2P space through subscribe(resource claim)
primitive and resources update the resource status through publish(resource
ticket) primitive. Resource claims are window objects (shownas rectangles)
while resource tickets are point objects (denoted by dots).Above figure
represents a P2P space in2-dimensions.

The DHT based P2P space performs the runtime load-
balancing across the federation sites based on their current
resource utilisation. The load-balancing mechanism is simple:
the coordination service notifies a resource claimer to sub-
mit his jobs to a particular resource ticket issuer (resource
provider) only if the contacted resource ticket issuer is not-
overloaded as a result of accepting the claimer’s job. Re-
source metrics such as the number of processors available
or utilisation forms the basis for determining the load at a
ticket issuer’s site. In Fig. 1, brokers, on behalf of local
users post the resource claims to the DHT based P2P space.
Similarly, resource providers post the resource ticket objects
on the space. When a claim object overlaps a ticket object, the
P2P space sends notification to the respective resource claimer
about the match. Following this the resource claimer can go
ahead and deploy his distributed experiment or applicationon
that resource.

E. Our Contributions

The main contributions of this paper include: (i) global co-
ordination protocol for load-management between distributed
brokers; (ii) proposal for utilising the DHT based spatial index
for managing the complex coordination objects and decen-
tralising the protocol; and (iii) extensive simulation based



experiments for analysing the effectiveness of the proposed
protocol. We now summarise some of our findings:

• resource claim and ticket object injection rate has signif-
icant influence on the coordination delay experienced by
distributed users in the system.

• proposed coordination protocol is highly effective in
curbing the number of scheduling negotiation iteration
undertaken on per job basis, the redemption and notifica-
tion message complexity involved with the coordination
protocol is bounded by functionΘ(1).

• In a federation ofn heterogeneous nodes, on average the
number of messages required to successfully map a job
to a resource is bounded by functionΘ(log n).

II. PAPER ORGANISATION

The rest of this paper is structured as follows: Section III
sets the proposed coordination protocol in context with related
work. Section IV gives an overview of the Grid scheduling
model that we consider in this paper. Next, Section V discusses
the key elements of coordination protocol. Section VI sum-
marisesd-dimensional spatial index that forms the basis for
mapping the coordination objects. In Section VII, we present
the finer details on the coordinated application scheduling
and resource provisioning algorithms. Message complexity
analysis is presented in Section VIII. In Section IX, we present
various experiments and discuss our results. We end this paper
with concluding remarks in Section X.

III. R ELATED WORK

The main focus of this section is to compare the novelty of
the proposed work with respect to the current state-of-the-art.
Coordinated management of federated distributed computing
resources has been a widely studied research problem in the
recent past. Several research projects including Bellagio[4],
Tycoon [16], NASA-Scheduler [21], OurGrid [3], Sharp [10],
Shirako [15], and Condor-Flock [7] have proposed federated
models for organising distributed compute and storage re-
sources. These systems offer varying degree of global coor-
dination with respect to load-management. Further based on
the network and communication models these approaches have
different scalabilities.

Shirako [15] system presents a mechanism for on-demand
leasing of shared networked resources. Shriako’s leasing archi-
tecture builds upon the Sharp framework for secure resource
peering and distributed resource allocation. Participantsites
delegate the resource leasing decision control to broker(s) in
the system. The broker(s) implements policies for resource
selection, provisioning and admission control. A resource
provider in Shirako posts resource ticket with the broker, while
a resource consumer requests the tickets from a broker. The
broker issues a ticket for a resource type, quantity, and site
location that matches the given request. However, Shirako
system does not define how different brokers in the system
connect with each other as the system grows to a large number
of participants. This is based on the assumption that each
participating site or administrative domain instantiatesits own

broker that controls the way local resources are made available
to the outside world. In this setting, brokers should be ableto
perform global coordination in a scalable and efficient manner.
The novel contribution of the proposed work lies in this
domain i.e. efficient protocol for enforcing global coordination
among distributed brokers in the system.

Bellagio [4] is a market-based resource allocation system
for federated distributed computing infrastructures. Resource
allocation in this system is based on bid-based proportional
resource sharing model. Bids for resources are cleared by a
centralized auctioneer. Effectively, the centralised auctioneer
performs the role of the coordinator in the system. With
the centralised auction approach the best-case communication
overhead ofO(c) is involved if the auction is limited to
c participants andO(n) if not. In contrast, the proposed
coordinated load-management protocol is based on a DHT
basedd-dimensional space that is inherently scalable, self-
organising and does not suffer from a single point of failure.

Tycoon [16] is a distributed market-based resource alloca-
tion system. Application scheduling and resource allocation in
Tycoon is based on decentralised isolated auction mechanism.
Every resource owner in the system runs his own auction
for his local resources. Furthermore, auctions are held in-
dependently, thus clearly lacking any coordination. In worst
case, a scheduler can end-up bidding across alln sites in the
system. Hence on per job basis a scheduler can generateO(n)
messages in the system. Since, Tycoon is based on distributed
auction, therefore it has a best-case communication overhead
of O(n c) is based on the assumption that an auction is limited
to c participants. In contrast with the proposed coordinated
load-management protocol, a broker needs to undertake close
to logarithmic number messages (that we show later) on per
job basis.

The system [21] models a Grid broker architecture and stud-
ies three different distributed job migration algorithms.Each
computational resource site has a Grid broker/superscheduler
(GS) and a local scheduler (LRMS). Scheduling in the Grid
environment is facilitated through coordination between site
specific LRMS and the GS. System-wide load coordina-
tion algorithms such as the sender-initiated, receiver-initiated
and symmetrically-initiated algorithms are based on com-
plete broadcast messaging between participants GSes, thereby
clearly incurringO(n) messages on per job basis. We improve
on these load coordination algorithms by reducing the number
of messages close to logarithm of the number of GSes in the
system.

Condor-Flock [7] presents a Grid scheduling system that
consists of Internet-wide Condor work pools. It utilises the
Pastry routing substrate with respect to decentralisationand
scalable resource discovery. The site managers in the overlay
coordinate the load-management by announcing its available
resources to all the sites whose Identifiers (IDs) appear in the
routing table. Hence in network ofn condor sites,O(n logb n)
messages are generated per resource status change on per
site basis. An optimised version of this protocol proposes
recursively propagating the load-information to the siteswhose



IDs are indexed by contacted site’s routing table. A load-
information message is removed from the system based on the
system-wide configured Time-to-Live (TTL) value. However,
if the TTL value is sufficiently large then the number of
messages generated in the system converges towards the
broadcast communication.

Similarly, the load-information coordination in OurGrid [3]
is also based on complete broadcast messaging. OurGrid
system is implemented using the JXTA [14] P2P substrate. In
contrast, our coordinated load-management protocol utilises a
d-dimensional spatial index over a DHT space for determin-
istic lookups and coordination. This gives the system ability
to produce controllable number of messages and guarantees
a deterministic behaviour with respect to number of routing
hops.

IV. M ODELS

A. Grid Scheduling Model

Coordinated load management protocol derives from
the Grid-Federation [19] resource sharing model. Grid-
Federation aggregates distributed resource brokering andal-
location services as part of a cooperative resource sharing
environment. The Grid-Federation,GF = {R1, R2, . . . , Rn},
consists of a number of sites,n, with each site having to
contribute its local resources to the federation. Every site in
the federation has its own resource setRi which contains the
definition of all resources that it is willing to contribute.Ri

can include information about the CPU architecture, number
of processors, RAM size, secondary storage size, operating
system type, etc. In this work,Ri = (pi, xi, µi, øi, γi), which
includes the number of processors,pi, processor architecture,
xi, their speed,µi, installed operating system type,øi, and
underlying interconnect network bandwidth,γi . Refer to
Table. I for the notations that we utilise in the remainder of
this paper.

Resource brokering, indexing and allocation in the Grid-
Federation is facilitated by a Resource Management Sys-
tem (RMS) known as the Grid Federation Agent (GFA). Fig. 2
shows an example Grid-Federation resource sharing model
consisting of Internet-wide distributed parallel resources. Ev-
ery contributing site maintains its own GFA service to keep
control of its resources, manage local jobs and allocate pro-
cessors to jobs that are migrated from remote sites in the
federation. The GFA service is composed of three software
entities including a Grid Resource Manager (GRM), Local
Resource Management System (LRMS) and Distributed In-
formation Manager (DIM) or Grid Peer.

The GRM component of a GFA exports a Grid site to
the federation and is responsible for coordinating federation
wide application scheduling and resource allocation. The GRM
is responsible for scheduling the locally submitted jobs in
the federation. Further, it also manages the execution of re-
mote jobs in conjunction with the local resource management
system. The LRMS software module can be realised using
systems such as PBS [6], SGE [13]. Additionally, LRMS
implements the following methods for facilitating federation

TABLE I

NOTATIONS.

Symbol Meaning

Resource
n number of Grid Federation Agents (GFAs) in the Grid

network
Ri configuration of thei-th resource in the system.
ρi resource utilisation for resource at GFAi.
xi processor architecture for resource at GFAi.
pi number of processors for reosurce at GFAi.
φi operating system type for resource at GFAi.
µi processor speed at GFAi.

Job
Ji,j,k i-th job from thej-th user ofk-th GFA.
pi,j,k number of processor required byJi,j,k.
φi,j,k operating system type required byJi,j,k.

T (Ji,j,k, Rk) time function (expected response time forJi,j,k at
resourcek).

Index
ri,j,k a claim posted for jobJi,j,k.
Ui a ticket issued by thei-th GFA/broker.

dim dimensionality or number of attributes in the Carte-
sian space.

fmin minimum division level ofd-dimensional index tree.
gindexi object encapsulating details on a GFA’s IP address,

service port number etc.
Mc, Mt random variables denoting number of of messages

generated in mapping a claim and ticket object.
Tc, Tt random variables denoting number of disjoint query

paths undertaken in mapping a claim and ticket object.

Network
λin total incoming claim/ticket arrival rate at a network

queuei.
λout outgoing claim/ticket rate at a network queuei.
µni

average network queue service rate at a Grid peeri.
µr average query reply rate for index service at GFAi.
λin

t incoming ticket rate at a application servicei.
λin

c incoming claim rate at a application servicei.
λin

a incoming query rate at a DHT routing servicei from
the local application service.

λin
index

incoming index query rate at a application servicei
from its local DHT routing service.

K network queue size .

wide job submission and migration process: answering the
GRM queries related to local job queue length, expected
response time and current resource utilization status.

The Grid peer module in conjunction with indexing service
performs tasks related to decentralised resource lookups and
updates. A Grid Peer service generates two basic types of
objects with respect to coordinated grid brokering: (i) a claim,
a object sent by a GFA service to the P2P space for locating
the resources matching a user’s application requirements;and
(ii) a ticket, is an update object sent by a Grid site owner about
the underlying resource conditions. Since, a Grid resource
is identified by more than one attribute, a claim or ticket
is alwaysd-dimensional. Further, both of these queries can
specify different kinds of constraints on the attribute values.
If a query specifies a fixed value for each attribute then it is
referred to as ad-dimensional Point Query(DPQ). However,
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Fig. 2. GFAs and Grid sites with their Grid peer service and some of the
hashings to the Chord ring. Dark dots are the Grid peers that are currently part
of Chord based Grid network. Light dots are the ticket/claimobject posted
by Grid sites and GFA service.

in case the query specifies a range of values for attributes, then
it is referred to as ad-dimensional Window Query(DWQ) or
a d-dimensional Range Query(DRQ). In database literature,
a DWQ or an DRQ is also referred to as aspatial range
query. Grid peer component of GFA service is responsible for
distributed ticket publication, claim subscription and overlay
management processes.

B. Job Model

In order to study the effectiveness of the proposed proto-
col with respect to load management, we consider coordi-
nated scheduling of synchronous parallel applications on a
distributed system of parallel resources (such as cluster or
supercomputer). A job consists of the number of processors
required,pi,j,k, the job length,li,j,k (in terms of instructions),
and the communication overhead,αi,j,k. We write Ji,j,k to
represent thei-th job from thej-th user of thek-th site.

To capture the nature of parallel execution with message
passing overhead involved in the parallel application, we
considered a part of total execution time as the communi-
cation overhead and remaining as the computational time.
We consider the network communication overheadαi,j,k for
a parallel job Ji,j,k to be randomly distributed over the
processes. In other words, we don’t consider the case e.g.
when a parallel program written for a hypercube is mapped
to a mesh architecture. We assume that the communication
overhead parameterαi,j,k would scale the same way over all
the clusters depending onγi. The total data transfer involved
during a parallel job execution is given by,

Γ(Ji,j,k, Rk) = αi,j,k × γk.

The time for jobJi,j,k = (pi,j,k, li,j,k, αi,j,k) to execute on

a parallel resourceRm is,

T (Ji,j,k, Rm) =
li,j,k

µm pi,j,k

+
Γ(Ji,j,k, Rk)

γm

.

V. COORDINATION PROTOCOL

We start this section with the description on the commu-
nication, coordination and indexing models that are utilised
to facilitate the P2P coordination space. Thereafter we look
at the composition of objects, access primitives that form the
basis for coordinating the application schedules among the
distributed GFAs/brokers.

A. Coordination Objects

This section gives details about the resource claim and
ticket objects that form the basis for enabling decentralised
coordination mechanism among the brokers/GFAs in a Grid
system. These coordination objects include:- Resource Claim
and Resource Ticket. We start with the description of the
components that form the part of a Grid-Federation resource
ticket object.

Resource Ticket

Index node i

Site s

Resource ticket Coordinator 
        for index node i

GFA

GFA

GFA

GFA

Site u

Site p
Site l

  Resource Claim p

  Resource Ticket u
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Spatial Hash (index node i)

  Resource Claim y
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D
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O

  Resource Claim k

  Resource Ticket m

Fig. 3. Resource allocation and application scheduling coordination across
Grid sites.

Every GFA in the federation publishes its resource ticket
with the local Coordination service. A resource ticket object
Ui or update query consists of a resource descriptionRi, for
a resourcei.

Resource Ticket: Total-Processors= 100 && Processor-
Arch= Pentium && Processor-Speed= 2 GHz && Operating-



System = Linux && Utilization=0.80.

Resource Claim

A resource claim or look-up object encapsulates the
resource configuration needs of a user’s job. In this work, we
focus on the job types the needs of which are confined to
computational grid or PlanetLab resources. Users submit their
application’s resource requirements to the local GFA. The
GFA service is responsible for searching the resources in the
federated system. A GFA aggregates the characteristics of a
job includingpi,j,k, xi,j,k, øi,j,k with constraint on maximum
speed, and resource utilization into a resource claim object,
ri,j,k.

Resource Claim: Total-Processors≥ 70 && Processor-
Arch= pentium && 2 GHz≤ Processor-Speed≤ 5GHz &&
Operating-System = Solaris && 0.0≤ Utilization ≤ 0.90.

The resource ticket and claim objects are spatially hashed
to an index celli in the d-dimensional coordination space.
Similarly, coordination services in the Grid network hash
themselves into the space using the overlay hashing func-
tion (SHA-1 in case of Chord and Pastry). In Fig. 3, resource
claim objects issued by sitep and l are mapped to the index
cell i, are currently hashed to the sites. In this case, sites is
responsible for coordinating the resource sharing among all the
resource claims that are mapped to the celli. Subsequently,
site u issues a resource ticket (shown as dot in the Fig. 3)
that falls under a region of the space currently required by
users at sitep and l. In this case, the coordinator service of
site s has to decide which of the sites (i.e. eitherl or p or
both) be allowed to claim the ticket issued by siteu. This
load-distribution decision is based on the fact that it should
not lead to over-provisioning of resources at siteu.

TABLE II

CLAIM LIST .

Time Claim ID µi,j,k pi,j,k xi,j,k φi,j,k

200 GFA2U1J2 > 800 50 Intel Linux
350 GFA5U3J5 > 1200 20 Intel Linux
500 GFA6U10J13 > 700 10 Sparc Solaris
700 GFA10U3J5 > 1500 1 Intel Windows XP

TABLE III

TICKET LIST.

Time GFA ID µi pi pi avail xi φi

900 GFA-8 1400 80 75 Intel Linux

In Table II, we show an example list of claim objects that
are stored with a coordination service at timet = 900 secs.

Essentially, the claims in the list arrived at a time≤ 900
and are waiting for a suitable ticket object that can meet its
resource configuration requirements. While Table III depicts
the list of ticket objects that have arrived att = 900 secs.
Following the ticket arrival event the coordination service
undertakes a procedure that divides this ticket object among
the list of claims. Based on the resource attribute specification
only Claim 1 and Claim2 matches the ticket’s resource con-
figuration. As specified in the ticket object there are currently
75 processors available with the GFA8, which is less than the
sum of processors required by Claim1 and2 (i.e., 70). Hence
in this case, the coordination service based on a First-Come-
First-Server (FCFS) queue processing scheme, first notifiesthe
GFA that has posted Claim1 and follows it with the GFA
responsible for Claim2. However, the Claims3 and4 has to
wait for the arrival of tickets that can match their required
resource configuration.

Once a resource ticket matches with one or more resource
claims, then a coordinator service sendsnotificationmessages
to the resource claimers such that it does not lead to the
overloading of the concerned resource ticket issuer. Thus,this
mechanism prevents the resource brokers from overloading
the same resource. In case of PlanetLab environment, it can
prevent the users from instantiatingsliverson the same set of
nodes. The coordination service notifies a claimer for resources
by issuing a soft state pass that is redeemable for a lease at the
ticket issuer GFA in the system. The soft state pass specifies
the resource typeRi for which access should be granted over
a duration (expected running time of an application). GFAs on
behalf of locate site issue tickets for resources and post tothe
coordination space. Our coordination protocol can leverage
the Sharp framework [10] with respect to secure resource
exchanges. In Sharp all exchanges are digitally signed, and
the GFAs/brokers endorse the public keys of the GFAs in the
system.

VI. D-DIMENSIONAL COORDINATION OBJECTMAPPING

AND ROUTING

1-dimensional hashing provided by current implementation
of DHTs are insufficient to manage complex objects such as
resource tickets and claims. DHTs generally hash a given
unique value/identifier (e.g. a file name) to a1-dimensional
DHT key space and hence they cannot support mapping and
lookups for complex objects. Management of those objects
whose extents lie ind-dimensional space warrants embedding
a logical index structure over the1-dimensional DHT key
space.

We now describe the features of the P2P-based spatial index
that we utilise for mapping thed-dimensional claim and ticket
objects over the DHT space. Providing background work and
details on this topic is beyond the scope of this paper; here
we only give a high level picture. The spatial index that we
consider in this work assigns regions of space to the Grid
peers in the Grid-Federation system. If a Grid peer is assigned
a region of d-dimensional space, then it is responsible for
handling query computation associated with the claim and



ticket objects that intersect that region, and for storing the
objects that are associated with the region. Fig. 4 depicts a2-
dimensional Grid resource attribute space for mapping claim
and ticket objects. The attribute space has a grid-like structure
due to its recursive division process. The index cells resulted
from this process remain constant throughout the life of the
d-dimensional attribute space and serve as a entry points for
subsequent mapping of claim and ticket objects. The number
of index cells produced at the minimum division level is
always equal to(fmin)dim, wheredim is the dimensionality
of the Cartesian space. More finer details on recursive sub-
division technique can be found in the article [24]. Every
Grid peer in the network has the basic information about the
Cartesian space coordinate values, dimensions and minimum
division level.
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Grid peer s

Claim Y

Claim X

Ticket N

Claim W
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Ticket M
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Fig. 4. Spatial resource claims{W ,X,Y ,Z}, cell control points, point
resource tickets{M} and some of the hashings to the Chord, i.e., thed-
dimensional coordinate values of a cell’s control point is used as the key and
hashed onto the Chord. Dark dots are the grid peers that are currently part of
the network. Light dots are the control points hashed on the Chord. For this
figure, fmin = 2, dim=2.

Every cell at thefmin level is uniquely identified by its
centroid, termed acontrol point. Fig. 4 depicts four control
points A, B, C and D. DHT hashing method such as the
Chord method is utilised to hash these control points so the
responsibility for managing a index cell is associated witha
Grid peer in the system. In Fig. 4, control pointB is hashed to
the Grid peers, which is responsible for managing all claim
and ticket object that are stored with that control point. For
mapping claim objects, the search strategy depends whether
it is a DPQ or DRQ. For a DPQ type claim, the mapping
is straight forward since every point is mapped to only one
cell in the Cartesian space. For a DRQ type claim, mapping
is not always singular because a range look-up can cross
more than one cell. To avoid mapping a range claim to all
the cells that it crosses (which can create many unnecessary
duplicates) a mapping strategy based on diagonal hyperplane
of the Cartesian space is utilised. This mapping involves
feeding a claim candidate index cells as inputs into a mapping
function, Fmap. This function returns the IDs of index cells
to which given claim should be mapped. Spatial hashing is
performed on these IDs (which returns keys for Chord space)
to identify the current Grid peers responsible for managingthe
given keys. A Grid peer service use the index cell(s) currently

assigned to it and a set of known base index cells obtained at
initialisation as the candidate index cells.

Similarly, mapping the ticket also involves the identification
of the cell in the Cartesian space. A ticket is always associated
with an event region and all cells that fall fully or partially
within the event region will be selected to receive the cor-
responding ticket. The calculation of an event region is also
based upon the diagonal hyperplane of the Cartesian space.

VII. A LGORITHMS

A. Distributed Application Scheduling Algorithm

In this section we provide detailed descriptions of the
scheduling algorithm that is undertaken by a GFA in the
Grid-Federation system following arrival of a job:

1. When a jobJi,j,k, arrives at a GFA, the GFA compiles a
resource ticket object for that job. It then posts this resource
ticket object with the P2P space though the Core services
layer. In Fig. 1 GFA1 is posting a resource claim on behalf
of its local user.

2. When a GFA receives a notification (soft state pass)
for resource ticket and resource claim match from the P2P
coordination space, then it contacts the ticket issuer GFA
for redeeming the ticket. After notifying the claimer GFA,
the coordination service unsubscribes the resource claim for
that job from the space. In Fig. 1, the match event occurs
and GFA1 is notified that it can redeem the matched ticket
with GFA 3. Once GFA3 agrees to grant access to its local
resources then GFA1 transfers the locally submitted job to
the GFA 3. Further, GFA1 unsubscribes the claim object
from the space to remove duplicates.

3. However, if the ticket issuer GFA fails to grant access
due to local resource sharing policy then the claimer GFA re-
posts the resource claim forJi,j,k with P2P space for future
notifications.

B. Decentralised Resource Provisioning Algorithm

In this section, we present the details on the decentralised
resource provisioning algorithm that is undertaken by the
coordination services across the P2P space.

1. When a resource claim object arrives at a coordination
service for future consideration, the coordination service
queues it in the existing claim list as shown in the
Algorithm. 1.

2. When a resource ticket object arrives at a coordination
service, the coordination service calls the auxiliary procedure
match(ticket) (as shown in Algorithm. 1) to gather the list of
resource claims, which overlap with the submitted resource
ticket object in thed-dimensional space. This initial resource
claim match list is passed to another auxiliary procedure
Load Dist(matchList, ticket).



PROCEDURE: ResourceProvision0.1
begin0.2

list← φ0.3
begin0.4

Claim Arrival (Claim ri,j,k)0.5
list ← list ∪ ri,j,k.0.6

end0.7
begin0.8

Match (Ticket Ui)0.9
listm ← φ0.10
set index = 00.11
while ( list[index] 6= null ) do0.12

if ( Overlap (list[index], Ui) ) then0.13
listm ← listm ∪ list[index]0.14

end0.15
else0.16

continue0.17
end0.18
resetindex = index + 10.19

end0.20
return listm .0.21

end0.22
begin0.23

Overlap (Claim ri,j,k, Ticket Ui)0.24
if (ri,j,k ∩ Ui 6= null ) then0.25

return true.0.26
end0.27
else0.28

return false.0.29
end0.30

end0.31
begin0.32

Ticket Arrival (Ui)0.33
call LoadDist(Ui, Match(Ui)).0.34

end0.35
begin0.36

Load Dist (Ui, listm)0.37
set index = 00.38
while (Ri is not over-provisioned)do0.39

send notification match event to resource claimer:0.40
listm [index]
remove(listm [index])0.41
resetindex = index + 1.0.42

end0.43
end0.44

end0.45

algocf
Algorithm 1 : Decentralised Resource provisioning algorithm for
coordination service.

3. The Loaddist() procedure notifies the resource claimers
about the resource ticket match until the ticket issuer is not
over-provisioned. The LoadDist() procedure can utilise the
resource parameters such as the number of available proces-
sors, threshold queue length etc as the over-provision indicator.
And these over-provision indicators are encapsulated withthe
resource ticket object by the GFAs. The GFAs can post the
resource ticket object to the P2P space either periodically
or whenever the resource condition changes such as a job
completion event happens.

C. Layered Design of the Coordination Protocol

Fig. 5 shows the layered design of the proposed coordination
protocol. The OPeN architecture proposed in the work [23] is
utilised as the base model in architecting and implementingthe
proposed protocol. The OPeN architecture consists of three

layers: theApplication layer, Core Serviceslayer andCon-
nectivity layer. Grid Services such as resource brokers work
at Application layer and insert objects to the Core services
layer.

E.g. Coordination Service

 Tuples/Objects are  inserted/deleted/
queried.

Core  Services  Layer

Coordination Service

Resource Discovery  Service

E.g.  Indexing Logic 
(such as publish/subscribe index)

Logical index space initialisation and 
 management.

Application   Layer
E.g. Brokering  Service, Auction Service
Workflow Engine, MPI-G

RLQs and RUQs are inserted/deleted/
queried.

Connectivity  Layer

E.g. Key-based Routing 

Message routing between peers and 
repl ica management.

Fig. 5. Layered design of the coordination protocol.

We have implemented the Coordination service as a sub-
layer of the Core services layer. The Coordination service
accepts the application objects such as claims/tickets. These
objects encapsulate coordination logic, which in this caseis
the resource provisioning logic. These objects are managed
by coordination service. The calls between the Coordination
service and Resource discovery service are made through
the standard publish/subscribe way. The Resource discovery
service is responsible for managing the logical index space
and communicating with the Connectivity layer.

The Connectivity layer is responsible for undertaking key-
Based routing in the DHT space such as Chord, CAN, Pastry
etc. The actual implementation protocol at this layer does not
directly affect the operations of the Core services layer. In
principle, any DHT implementation at this layer could perform
the desired task. However, in this paper the simulation models
the Chord substrate at the Connectivity layer. Chord hashes
the peers and objects (such as fileIds, logical indices etc)
to the circular identifier space and guarantees that an object
in the network can be located inΘ(log n) steps with high
probability. Each peer in the Chord network is required to
maintain the routing state of onlyΘ(log n) other peers, where
n is the total network size.

VIII. C OMPLEXITY ANALYSIS

Definition 1 In a federation ofn heterogeneous nodes, on
average a jobJi,j,k requiresΘ(log n) messages to be sent in
the network in order to locate a node that can successfully



complete the job without being overloaded.

Scheduling a jobJi,j,k in the coordinated federation in-
volves the following steps: (i) posting the resource claim
object to DHT based tuple space; (ii) receiving the notification
message from the tuple space when a resource ticket object hits
the claim object; (iii) contacting the GFA (site authority)about
the claim-ticket match, the contacted GFA performs certain
checks such as security, resource availability. Hence, thetotal
number of messages produced in successfully allocating a
job to a resource is summation of the number of messages
produced in these three steps.

We denote the number of messages generated in mapping a
resource claim by a random variableMc. The distribution of
Mc is function of the problem parameters including query size,
dimensionality of search space, query rate, division threshold
and data distribution. Note that, the derivation presentedin this
paper assumes that the Chord method is used for delegation of
service messages in the network. Essentially, a control point at
thefmin level of the logicald-dimensional Cartesian space can
be reached inΘ(log n) routing hops using the Chord method.
Based on the above discussion, in order to compute the worst
case message lookup and routing complexity one additional
random variableTc is considered.Tc denotes the number of
disjoint query path undertaken in mapping a claim object. Note
that, with this spatial index a resource claim can be utmost
mapped to2 index cells. And every disjoint path will undertake
E[Tc] × (log2 n) routing hops with high probability. Hence,
the expected value ofMc is given by:

E[Mc] = E[Tc] × (log2 n),

substituting E[Tc] with the value 2 and adding2 for
messages involved with sending notification and negotiating
SLAs (steps 2 and 3),

E[Mc] = 2 × (log
2
n) + 2,

ignoring the constant terms in the above equation we get,

E[Mc] = Θ(log n). (1)

Lemma 1 In a federation ofn GFAs/brokers, each broker
having m jobs to schedule then total scheduling messages
generated in the system is bounded by the functionΘ(m ×
n × log n).

This lemma directly follows from Definition 1. Since a job
in the system requiresΘ(log n) messages to be undertaken
before it can be successfully allocated to resource, therefore
computing the scheduling message complexity form jobs
distributed overn GFAs/brokers is straightforward.

Definition 2 In a federation ofn heterogeneous resources
if GFAs/brokers postsp resource ticket object over a time
period t, then the average-case message complexity involved
with mapping these tickets to Grid peers in the network is

bound by the functionΘ(E[Tt] × p × log n).

The proof for this definition directly follows from Definition
1 and Lemma 1. The procedure for mapping the ticket object
to the Grid peers is similar to the one followed for a claim
object. A ticket object is always associated with an event
region, and all index cells that fall fully and partially within
the even region will be selected to receive the corresponding
ticket object. The number of disjoint query path taken to map
a ticket object is denoted by random variableTt with mean
E[Tt].

IX. PERFORMANCEEVALUATION

In this section, we validate the effectiveness of the proposed
coordination protocol through the trace driven simulation.

A. Simulation Model

Broker

Service

Index msgs.

Reply

M/M/1/K

Chord

Service

to Grid peersmessages
Networkfrom other

Grid peers

Index

Service

λin
t

λin
c

λout

µnλin

λin
index

λin
a

µr1 2

3

4

5 6

Fig. 6. Network message queueing model at a Grid peeri.

In our message queueing model, a Grid peer node (through
its Chord routing service) is connected to an outgoing message
queue (see label 6 in Fig. 6) and an incoming link from the
Internet (see label 5 Fig. 6). The network messages that are
delivered through the incoming link (effectively coming from
other Grid peers in the overlay) are processed as soon as they
arrive. If the destination of the incoming messages is the local
index service then they are put in the index message queue (see
label 2 in Fig. 6). Else the messages are routed through the
outgoing queue to the next successor Chord service, which
is more closer to the destination in the Chord key space.
Further, the Chord routing service (see label 4 in Fig. 6)
receives messages from the local index service (see label 3
in Fig. 6). Similarly, these messages are processed as soon
as they arrive at the Chord routing service. After processing,
Chord routing service queues the message in the local outgoing
queue. Basically, this queue models the network latencies that
a message encounters as it is transferred from one Chord
routing service to another on the overlay. Once a message
leaves an outgoing queue it is directly delivered to a Chord
routing service through the incoming link. The distributions for



the delays (including queueing and processing) encountered in
an outgoing queue are given by the M/M/1/K [2] queue steady
state probabilities.

B. Experimental Setup

We start by describing the test environment setup.

Experiment configuration:
• Simulators: Our simulation infrastructure was

modeled by combining two discrete event simulators
namely GridSim [8], and PlanetSim [11]. GridSim
offers a concrete base framework for simulation of
different kinds of heterogeneous resources, services and
application types. PlanetSim is an event-based overlay
network simulator. It can simulate both unstructured and
structured overlays.

• Network configuration: The experiments ran a Chord
overlay with 32 bit configuration i.e. number of bits
utilised to generate node and key ids. The GFA/broker
network sizen was fixed to100. Next, network queue
message processing rate,µ, was fixed at 500 messages
per second. And message queue size,K, was fixed at
104.

• Resource claim and resource ticket injection rate: The
GFAs injected resource claim and ticket objects based
on the exponential inter-arrival time distribution. The
value for resource claim inter-arrival delay,1

λin
c

, was
distributed over[60, 600] in steps of60 seconds. While
the GFAs injected resource ticket objects with mean
delay, 1

λin

t

, distributed over[120, 600] in steps of120

seconds. Note that, mean inter-arrival delay for injecting
the claim/ticket object was modeled to be the same for all
the GFAs/brokers in the system. The GFAs in the system
posted ticket objects in the system untill all the jobs are
successfully executed and job’s output returned to their
respective GFA. Spatial extent of both resource claim and
ticket objects lied in a4-dimensional attribute space, i.e.,
dim = 4. These attribute dimensions include the number
of processors,pi, their speed,mi, their architecture,xi,
and operating system type,φi. The distributions for these
resource dimensions were obtained from the Top500
supercomputer list1.

• Resource load indicator: The GFAs/brokers encode the
metric “number of available processors”at time t with
the resource ticket objectUi. A coordination service
utilizes this metric as the indicator for the current load on
a resourceRi. In other words, a coordinator service will
stop sending the notifications as the number of processors
available with a ticket issuer approacheszero.

• Spatial index configuration:fmin of the logical d-
dimensional spatial index was set to4. The index space
resembles a Grid-like structure where each index cell is
randomly hashed to a Grid peer based on its control

1Top 500 Supercomputer List, http://www.top500.org/

point value. With dim = 4, total of 256 index cells
were produced at thefmin level. Hence in a network that
consisted of100 GFAs, on an average the responsibility
of managing2.5 index cells were assigned to each GFA.
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Fig. 7. Scheduling perspective

• Workload configuration: We generated the workload dis-
tributions across GFAs based on the model given in the
paper [17]. The workload model generates the job-mixes
having the details on their run times, sizes, and inter-
arrival times. This model is statistically derived from
existing workload traces and incorporates correlations
between job run times and job sizes and daytime cycles
in job inter-arrival times. The model calculates for each
job its arrival time using2-gamma distributions, number
of nodes using a two-stage-uniform distribution, and run
time using the number of nodes and hyper-gamma dis-
tribution. The job characteristics were generated by con-
figuring the minimum and maximum processor per job
as2 and26 respectively in the workload model. Mostly
we utilised the default parameters already given by the
model except for the number of processors/machines. The
processor count for a resource was fed to the workload
model based on the resource configuration obtained from
the Top 500 list. The simulation environment models25
jobs at each GFA, and since there are100 GFAs therefore
total number of jobs in the system accounts to2500. Also
note that, we simulated the supercomputing resources in
space shared processor allocation mode.



C. Results and Observations
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Fig. 8. Scheduling perspective

1) Scheduling Perspective:We measured the performance
of coordination protocol with respect to the following schedul-
ing metrics: average coordination delay, average responsetime,
and average scheduling messages.

Fig. 8 shows the measurement for parameters coordination
delay, response time, processing time, job migration, schedul-
ing, and notification iterations. The metric coordination delay
sums up the latencies for: (i) resource claim to reach the
index cell; (ii) waiting time till a resource ticket matches
with the claim; and (iii) notification delay from coordination
service to the relevant GFA. Processing time for a job is
defined as the time a job takes to actually execute on a
processor or set of processors. Average response time for
a job is the delay between the submission and arrival of
execution output. Effectively, the response time includesthe
latencies for coordination and processing delays. Note that,
these measurements were collected by averaging the values
obtained for each job in the system. These results presented
here were averaged for all the jobs across every GFA in the
system.

Fig. 7(a) depicts results for average coordination delay
in seconds with increasing claim mean inter-arrival delay,
1

λin
c

. With increase in claim’s mean inter-arrival delay, we
observed decrease in the average coordination delay. The
results show that at higher inter-arrival delays, resourceclaim

objects experience less network traffic and competing requests.
Thus, this lead to an overall decrease in the coordination
delay across the system (see Fig. 7(a)). An other interesting
thing to note here is the variation of coordination delay as the
resource ticket’s mean inter-arrival delay increase. We varied
the 1

λin

t

over the interval[120, 600] in steps of120. As seen in
the Fig. 7(a), the increase in ticket’s mean inter-arrival delay
worsens the coordination delay. The chief reason for this being
that claims had to wait for longer period of time before they
were hit by a ticket object. The effect of this can also be
seen in the response time metric for the jobs (see Fig. 7(b)),
which is also seen to worsen with increase in ticket’s mean
inter-arrival delay.

The proposed coordination protocol was highly successful
in curbing the number of scheduling negotiation (redemption)
iteration undertaken on per job basis (see Fig. 8(a)). Next,
on the average GFAs/brokers receive close to1 coordination
notification on per job basis Fig. 8(b)). This suggests that
the redemption and notification complexity involved with the
coordination protocol isΘ(1). In Fig. 8(a) and 8(b), we also
plot the functionΘ(1) with label “theory”.

2) Coordination Space Perspective:Here we analyse the
performance overhead of the DHT-based space as regards to
facilitating coordinated scheduling among distributed GFAs.
In particular we measured the following metrics: (i) messages
produced mapping claim and ticket objects, (ii) number of
routing hops undertaken to map claim and ticket objects to
index cells and (iii) total network latency observed as claim
and ticket objects are routed over the Chord space.

Fig. 9(a) shows the number of routing hops undertaken at
different claim and ticket injection rate across the GFAs in
the system. Suffices“t” and “c” are used in as the label in
Fig. 9(a) to represent the values for ticket and claim object
respectively. Recall that that values shown here has been
averaged for all the jobs over all the GFAs in the system.
As expected with increase in the injection rates of the objects,
the number of routing hops did not change significantly. We
observed that the average routing hops for mapping ticket
objects was around3.6, while for claim objects it was around
3.4. This shows that routing hops for mapping claim/ticket
object is as expected in a Chord based routing space, i.e.,
bounded by the functionΘ(log n). As log

2
(100) = 6.64, it

can easily shown thatc1 × 3.6 ≤ 6.64 ≤ c2 × 3.6, wherec1

andc2 are constants.
In Fig. 9(b), we show the total number of messages pro-

duced as a result of successfully mapping and executing all
the jobs in the system. The measurement shown in this figure
includes both mapping and scheduling messages. Mapping
messages for a job equals to the number of messages that
are required to map a claim object for that job to the co-
ordination space. According to Section VIII, in a federation
of n heterogeneous resources or nodes, on average a job
requires Θ(log n) messages to be sent in the network in
order to locate a node that can successfully complete the job
without being overloaded. In our simulation, the total number
of messages produced for all the jobs (refer to Fig. 9(b))
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Fig. 9. Coordination space perspective

satisfies the theoretical bound on message generation, i.e.,
Θ(m×n× log n). This function is ploted with label “theory”
in Fig. 9(b)

In Fig. 10(a) and 10(b), we show the message overhead
involved with ticket objects. Fig. 10(a) depicts the total number
of ticket object posted by all GFAs in the system with
increasing claim inter-arrival delay (1

λin
c

). In Fig. 10(b), we
can see that as claim inter-arrival delay increases the number
of claim objects issued during the simulation period increases.
For 1

λin
c

= 100 seconds and 1

λin

t

= 120 seconds, total 6000

claim object were produced in order to successfully schedule
all the jobs in the federation. While for or1

dλin
c

= 600 seconds

and with same ticket inter-arrival delay, the GFAs issued20000
ticket objects. This shows that if jobs are injected at slow rate
into the system and the GFAs publish tickets as relatively faster
rate, then it leads to generation of large number ticket objects
in the system. However, if the GFAs inject ticket at slower
rate, i.e., 1

λin

t

= 600 seconds, then a relatively lesser number
of ticket objects are required to be issued in order to satisfy all
the jobs in the system. But in this case average coordination
delays on per jobs basis increases substantially (see Fig. 7(a)).
Fig. 10(b) depicts the total number of messages produced in
mapping the ticket objects to Grid peers with varying ticket
and claim inter-arrival delays.
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Fig. 10. Coordination space perspective

X. CONCLUSION

We presented a DHT based coordination protocol for ef-
ficiently managing the load in federated Grid computing
systems. Ad-dimensional spatial index formed the basis for
distributing claim and ticket objects over a structured Grid
broker overlay. Our simulation showed that: (i) resource claim
and ticket object injection rate has significant influence on
the coordination delay experienced by distributed users inthe
system; (ii) proposed coordination protocol is highly effective
in curbing the number of scheduling negotiation iteration
required to be undertaken on per job basis, the redemption and
notification message complexity is bounded by the function
Θ(1); and (iii) on average the number of messages required
to successfully map a job to a resource is bounded by the
function Θ(log n).

One limitation with our approach is that the current index
can map a resource claim object to at most2 index cells. In
some cases this can lead to generation of unwanted notification
messages in the system and may be to an extent sub-optimal
load-balancing as well. In our future work, we are going to
address this issue by constraining the mapping of a resource
claim object to an index cell. Another way to tackle this
problem is to make the peers currently managing the same
resource claim object communicate with each other before
sending the notifications.
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