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Abstract— Parameter-sweep has been widely adopted in large
numbers of scientific applications. Parameter-sweep features need
to be incorporated into Grid workflows so as to increase the
scale and scope of such applications. New scheduling mechanisms
and algorithms are required to provide optimized policy for
resource allocation and task arrangement in such a case. This
paper addresses scheduling sequential parameter-sweep tasks in a
fine-grained manner. The optimization is produced by pipelining
the subtasks and dispatching each of them onto well-selected
resources. Two types of scheduling algorithms are discussed and
customized to adapt the characteristics of parameter-sweep, as
well as their effectiveness has been compared under multifarious
scenarios.

I. I NTRODUCTION

The emergence of Grid computing has largely expanded the
scale of scientific applications [1][2]. Due to the involvement
of multiple organizations and institutions, scientific exper-
iments can be conducted in collaboration in a distributed
environment and share resources in a coordinated manner.
Among the programming models designed for Grid comput-
ing, combining dependent tasks into workflow systems [3] has
received attention in recent past.

Related research efforts on workflow management have
focused on how to define and manipulate the workflow
model [4], compose distributed software components and
data/documents together [5][6], as well as how to reduce the
global execution time or to fully utilize available resources to
achieve stated objectives [7][8]. However, within Grid scale
scientific applications, the presence of repeated tasks have
motivated introduction for mechanism to group and manage
such tasks. Let us consider the following scenario:

Suppose a data-analysis application consists of three steps.
Firstly, the experiments will gather data from a remote sensor
array. Each sensor in the array will be required to collect data
under the configuration of specific parameters. Then, the result
data will be staged to several data process centers. These
centers will filter the raw data to structured data, according
to the locally deployed knowledge databases on associated
computational resources. The remote filtering operation needs
to be divided into smaller tasks and carried out in parallel
– staging it as one workload can cause overloading of both
the selected computational resource and the database. At last,
the filtered data will be gathered to a scientific computing
visualization cluster for post-processing (e.g. visualization).

Now the scientist is going to establish a workflow in order
to automate the experiment. From the designer’s point of view,
the simplest definition is to assign each step as a single task,
hence a (pipeline) task-graph representing the workflow would
be:

Collecting(A)− > Filtering(B)− > V isualization(C)

The taskA and B are collections of one or more subtasks
representing repeated execution of a job. In this case, opera-
tions within data collection and filtering tasks are performed
over different sets of data. Such individual tasks are called
parameter-sweeptasks [9].

A characteristic of parameter-sweep task is that there is
no inter-communication between its subtasks. However, it
introduces a new challenge as it requires optimization of the
execution of such parameter-sweep tasks within workflow. In
a workflow application scenario shown in Figure 1, it is clear
that a subtask in taskB need not wait for all the results from
task A to be generated before it’s starting. A subtask inB
can be launched once a certain portion of the results fromA
is available. In this manner, the makespan of the application
execution could be reduced substantially.

In this paper, we focus on the mechanisms and algo-
rithms that implement thefine-grainedoptimization mentioned
above. We discuss both the static and dynamic scheduling
methodologies, while extending two well-known algorithms
and customizing them to achieve the best effectiveness under
task graphs with parameter-sweep tasks. The extended algo-
rithms, called xDCP and pM-S, are derived from the existing
Dynamic Critical Path (DCP)[10] and Master-Slave (M-S)[11]
algorithms respectively. The xDCP extends the original DCP in
order to support the scheduling among resources with different
capabilities. The pM-S tries to give higher priority to the sub-
task-graph which is estimated to complete earlier. Finally, we
analyze the proposed algorithms by comparing their behaviors
under different experimental scenarios.

The rest of the paper is organized as follows. A formal
definition of the optimization problem is presented in section
II. Section III will discuss about the possible optimization
toward parameter-sweep tasks in workflow. Experiments and
data are given in section IV. Section V discusses the related
work. Section VI presents the conclusion with the direction
for future work.
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Fig. 1. Optimizing the example parameter-sweep workflow.

II. OPTIMIZATION PROBLEM

In previous work [12], a workflow language xWFL together
with a Workflow Enactment Engine (WFEE) was proposed.
The system differs from other similar works due to the
event-driven model it follows. The work proposed in this
paper is also derived and extended on top of the WFEE
engine. However, parameter-sweep tasks in WFEE are simply
regarded as normal workflow tasks, while no optimization has
been carried out to deal with the internal optimization inside
the parameter-sweep tasks. This paper adopts a more fine-
grained scheme and extends it to support optimal scheduling
of workflow application with parameter-sweep tasks.

A. Terminology

Several concepts should be clarified as they will be used in
the following discussion:

1) Workflow application : Refers to an application con-
taining several tasks with dependencies represented by
a task graph.

2) Task: Refers to a task within a workflow which may be
parameter-sweep task containing several subtask with no
dependencies.

3) Subtask: Refers to the sub-task in a parameter-sweep
task, holding a specific portion of parameters. Each sub-
task has its ownlength, representing the time required
for executing it on a unit-capability resource.

4) Resource: Refers to the abstract resource that provides
execution environment for subtasks. Each resource has
its own throughput. Throughput defines the number of
capability units it can provide at the same time.

B. Problem statement

This sub-section gives the formal description of the opti-
mization problem.

As it is shown in Figure 2, letΓ =
⋃K

i=1 Ti be the
task space, includingK sequential parameter-sweep tasks and
N(Ti) refers to the number of subtasks inTi. Hence, for
eachTi, there areTi = {tij |j = 1..N(Ti)}. The length of
subtasktij is referred byl(tij), while L(Ti) = {l(tij)|j =
1..N(Ti)}. For eachi where 1 < i ≤ K, we define the
task dependency ofTi: D(Ti) = {d(tij)|j = 1..N(Ti)},
whered(tij) = {k|t(i−1)k ≺ tij}. The symbol≺ is a newly
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Fig. 2. Description of parameter-sweep task graphs.
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Fig. 3. Using virtual subtask to be the intermediate of task dependency.

defined binary relation that≺ (ta, tb) (also marked asta ≺ tb)
means tasktb must be put into execution strictly after the
accomplishment of taskta. Based on the task dependency,
we can define a subtask’s parents and children. The function
Parents(t) : Γ → ⋃K

i=1 T ∗i (whereT ∗i is Ti’s closure) refers
to the set of all the subtasks that subtaskt directly depends
on, formally:

Parents(tij) =
{

φ, if i = 1
{t′|t′ ∈ Ti−1, t

′ ≺ tij}, if i 6= 1.

Also we haveChildren(t) : Γ → ⋃K
i=1 T ∗i that

Children(tij) =
{

φ, if i = K
{t′|t′ ∈ Ti+1, tij ≺ t′}, if i 6= K.

From the definition we only allow the dependency between
the two adjacent tasks. For the dependencies between the non-
adjacent tasks, we can also define them by creating virtual
subtasks in the intermediate tasks. For example in Figure 3,
we use the subtaskt23 to be the intermediate between subtask
t32 and t13.

The resources are defined corresponding to the tasks. As-
sume Ω =

⋃K
i=1 Ri to be the resource space, in which

Ri = {rij |j = 1..N(Ri)} refers to the array of resources
specially for running all the subtasks inTi, where N(Ri)
refers to the number of individual resources in the resource
array. Note the resource here refers tovirtual resource instead
of physical resources like clusters or supercomputers with
one or more nodes. For physical resources, we could have
f = {<j |j = 1..M} representing the resource space available.
Each virtual resource presents a share of a physical resource
that is available for executing a particular parameter-sweep
task. A physical resource could be shared by multiple virtual
resources, providing different services to different tasks in the



workflow. In the following sections, the term ”resources” is
used to represent virtual resources.

We define the throughput of a single resourcerij to be
marked asp(rij), so that for a subtasktix and one of its
corresponding resourcesriy, the time forriy to finish tix will
be

ω(tix, riy) =
l(tix)
p(riy)

Let P (Ri) = {p(rij)|j = 1..N(Ri)}.
The optimization lies on the problem of resource queueing.

In most cases, the length of resource array will be much
less than the number of subtasks in a parameter-sweep task.
That means, some subtasks are required to be executed on the
same resource. We assume all the resources follow the rule of
exclusive. That is, resources are allocated using space-shared
scheduling policy (e.g., using queueing system such as PBS
for managing resources):

Axiom 1 (Rule of Exclusive):If subtasktim starts on time
ξ and consuming resourcerin, then no other subtask could be
started onrin during the time segment

[ξ, ξ +
l(tim)
p(rin)

)

Explanation of the axiom: If there areq subtasks of the
same task (marked ast1..tq) being queued sequentially on
the same resourcer, there will be temporary dependencies
between them as:t1 ¹ t2 ¹ ... ¹ tq, where the binary relation
¹ (a, b) is similar to≺ (a, b).

That means, all resources are non-preemptive and exclusive
in execution. The users can change the sequence of the queued
subtasks, but they cannot put multiple subtasks into parallel
execution on the same resource since they are allocated using
space-shared policy.

Next, we define the execution time of the tasks. Suppose
we have a collection of subtasksC and a set of dependencies
to makeC a task graph.Root(C) refers to the collection of
subtasks who have no subsequent:

Root(C) = {c|c ∈ C ∧ (∀c′ ∈ C, @c ≺ c′)}
Tree(c, C) represents to all the direct and indirect prece-

dents to nodec in the task graph. We give it a recursive
definition:

Tree(c, C) =
⋃

c′∈C,c′≺c

{Tree(c′, C)} ∪ {c′|c′ ∈ C, c′ ≺ c}

The execution time is calculated as the time cost for the
longest execution path in the given task graph. It is also defined
in a recursive way:

Time(C, R) =





0, if C = φ

maxc∈Root(C),r=f(c){ω(c, r) if C 6= φ
+Time(Tree(c, C), R)},

where f(c) : C → R is the assignment of the subtasks to
resources.

Having defined all the related concepts, the problem state-
ment is defined as follows:

Problem: Given{(Ti, Ri, D(Ti), L(Ti), P (Ri))|i = 1..K}.
Select the mappingf(t) : Γ → Ω to minimize Time(Γ, Ω)
under the rule-of-exclusive.

III. M ECHANISMS AND ALGORITHMS

There exist two types of scheduling mechanisms, namely,
static scheduling and dynamic scheduling. All decisions in the
static scheduling are made before starting the execution of
an application, which makes the static scheduling to be well-
adopted to those systems with highly-predictable environment.
In the contrary, dynamic scheduling making decisions during
the runtime, according to either the redefined policy or the cur-
rent environment parameters reflected from the system. Both
of them could be equally applied to workflows with parameter-
sweep tasks. In some dedicated environments, people may
prefer static scheduling to search for the best allocation of
resources, while the runtime scheduling is more useful in
the shared systems with unpredictable resource usage and
network weather. In this section, we discuss the scheduling
and optimization under both the two scenarios.

A. Static scheduling

The simplest solution of a static schedule is to allocate
all the subtasks in a shuffle way, namely assign tasktij
to ri(j%N(Ri)). However, due to the irregularity of both the
subtasks and the resources, shuffle scheduling might lead to the
inefficient result as less powerful resources may be assigned
heavy subtasks leading to imbalance in completion time of
various tasks.

Numerous works [13][14][15][16][17] have addressed the
topic of static scheduling of task graphs. However, task
graphs/workflows with parameter-sweep tasks have some spe-
cial features compared to normal task graphs:

1) Subtasks and resources are grouped in layers (parameter-
sweep tasks). A subtasktij is allowed to be scheduled
to Ri.

2) There is no dependency between subtasks in the same
layer.

3) Every subtask depends (if there exist dependency) on
only the subtasks in its parent layer, as it is specified in
section II.

Based on these criteria, we modified the DCP algorithm,
so that it could be adopted well for scheduling workflows
with parameter-sweep tasks. For convenience, we denote the
proposed algorithm byxDCP (extendedDCP).

The DCP algorithm based on the principle of continuously
shortening the longest path (also calledcritical path (CP))
in the task graph, by scheduling tasks in the current CP
to an earlier start time. The algorithm was designed for
scheduling all tasks to the same set of homogeneous resources.
However, the workflow scenario we defined in section II is
about scheduling different sets of tasks onto different sets of
irregular/heterogeneous resources.
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Fig. 4. Description of AEST/AEFT, ALST/ALFT and DCPL.

To tackle with the above conflict, basically we import the
following extensions into the original DCP algorithm:

1) The initialization of DCP algorithm is to queue all
tasks sequentially in one resource, while leaving other
resources empty. In xDCP, we first initialize the tasks in
a shuffle way. Experiments show that this adjustment can
improve the effectiveness of DCP by 30% in workflows
with parameter-sweep tasks.

2) The DCP algorithm uses the termabsolute earliest/latest
start time (AEST/ALST), which means the possible earli-
est/latest start time of a subtask on its current resource,
as shown in Figure 4. In particular, if a certain task
can have a smaller AEST on resource A than resource
B, then assignment to A will be regarded as a better
schedule for this task. However, in a scenario with
heterogenous resources, the executing time of the same
task on each resource is different. Therefore we have
to use another termabsolute earliest/latest finish time
(AEFT/ALFT) (means the possible earliest/latest finish
time of a subtasks on its current resource) to evaluate
the schedule.

3) The DCP algorithm ends if all the tasks have been
scheduled once. However, we found that under workflow
with parameter-sweep tasks it will deliver an extra 10%-
20% effectiveness if we further run DCP again on the
scheduled result. However, the time used in scheduling
should also be considered since DCP has a time com-
plexity of O(n3). It seems worthless if we keep looping
the DCP while the effect increasing is less than a certain
speedup-threshold (in our work, we set the speedup-
threshold to 5%) .

4) DCP considers the communication overhead incurred in
implementing the task dependency. However, there is no
inter-process communication between the subtasks of a
parameter-sweep task. Therefore we simply remove the
terms in DCP that related to the communication cost.

5) After a subtask has been scheduled by DCP, the al-
gorithm checks whether the subtask was scheduled to
the same resource queue with any other subtask that

the scheduled subtask directly or indirectly depends on,
and the scheduled subtask is planned to be executed
prior to its ancestor task. Also the subtask must not be
executed after any of its offspring subtasks on the same
queue. This check is for preventing deadlock generated
by the child tasks trying to be executed before parent
tasks. However in xDCP, this deadlock will never happen
because the subtasks with dependencies among them
will never be scheduled to the same set of resources.

Now we provide a formal description of the xDCP algo-
rithm. First, we will discuss the definition of the previous and
next subtask of a certain subtask in its resource queue:

In a given resource mappingf(σ) : Γ → Ω, for any subtask
t, we have its previous and next subtasks mapped in the same
resource queue. Formally:

Prev(t) =





ψ, if ∀t′ ∈ Γ, @f(t′) = f(t) ∧ t′ ¹ t

t′, if f(t′) = f(t) ∧ t′ ¹ t
∧(∀t′′ ∈ Γ, @t′ ¹ t′′ ¹ t)

Next(t) =





ψ, if ∀t′ ∈ Γ,@f(t′) = f(t) ∧ t ¹ t′

t′, if f(t′) = f(t) ∧ t ¹ t′

∧(∀t′′ ∈ Γ, @t ¹ t′′ ¹ t′)

Then comes the definition ofAEFT, DCPL (dynamic critical
path length) and ALFT (absolute latest finish time):

A subtask can be started only after all its parent subtasks are
finished, and all the previous tasks in the same resource queue
are also finished. The earliest finish time can be calculated
by adding the execution time on the current resource onto the
earliest start time. In a given resource mappingf(σ) : Γ → Ω,
the absolute earliest finish time of any subtaskt, denoted by
AEFT (t) is recursively defined as follows:

AEFT (t) =




0, if t = ψ ∨ (Parents(t) = φ ∧ Prev(t) = ψ)

max{max∀τ∈Parents(t){AEFT (τ) + ω(t, f(t))},
AEFT (Prev(t)) + ω(t, f(t))}, otherwise

The dynamic critical path length of the task graph is another
form for defining the termTime(C,R) in section II by using
the AEFT:

DCPL(f, Γ, Ω) = max
τ∈Γ

{AEFT (τ)}

Having the DCPL, we can define the latest finish time of a
subtask. The DCPL is the summation of the execution time
of all the subtasks on the critical path of the task graph.
Therefore, if we want to finish the whole execution by the
time of DCPL, all the subtasks on the critical path should be
finished at exactly their AEFT. The absolute latest finish time
of subtaskt should be no later than the latest start time of all
its children subtasks and its next subtask in the same resource
queue. We define it as:



ALFT (t) =




DCPL(f, Γ,Ω),
if t = ψ ∨ (Childrens(t) = φ ∧Next(t) = ψ)

max{max∀τ∈Children(t){ALFT (τ)− ω(τ, f(τ))},
ALFT (Next(t))− ω(Next(t), f(Next(t)))},

otherwise

The xDCP algorithm is listed below:
1) Shuffle all the subtasks inΓ onto the resources inΩ.

Let DCPL = 0;
2) ∀t ∈ Γ, sett to be unallocated;
3) ∀t ∈ Γ, computeAEFT (t) andALFT (t);
4) Let t be the subtasktij selected fromΓ which, orderly,

follow the three criterions below:
a) Minimize the value ofALFT (tij)−AEFT (tij);
b) Minimize the value ofi;
c) Minimize the value ofAEFT (tij);

5) ∀r ∈ Ω, selectr and the slot inr’s queue that, assuming
t is allocated onto this slot, orderly satisfying:

a) ALFT (t)−AEFT (Prev(t)) ≥ ω(t, f(t));
b) Minimize the value ofAEFT (t);

If there exists such a resource and slot, movet onto the
selected slot ofr, or else not move anything;

6) Set tij allocated. If∃t ∈ Γ unallocated, goto 3);
7) If DCLP (f, Γ, Ω)/DCLP ∗ 100% < 95%, goto 2); or

else the algorithm ends.

B. Dynamic scheduling

A most-commonly used dynamic scheduling mechanism is
theMaster-Slave (M-S) model. The M-S model is proven to be
quite efficient under most scenarios. It specifies the scheduler
to be the master, and all resources as slaves. Initially all the
tasks are queued on the master side, and the master will do an
initialization by dispatching the firstn tasks from the queue
head ton resources. After that, the master will wait until
some slave reports that his task has been finished. Then it
will dispatch the task located in the queue head to the newly
spared slave.

For the workflow applications with parameter-sweep tasks,
we employK masters corresponding toK parameter-sweep
tasks. For each master there are two queues instead of only one
queue in the original M-S model. Initially, all the subtasks are
stored in theUnscheduledqueue. There is another queue called
the Readyqueue. Only subtasks in the Ready queue can be
directly dispatched to slave nodes. At the start of scheduling,
all the subtaskst with Parents(t) = φ can be put into the
Ready queue, and then some of them (on the head of the Ready
queue) will be dispatched. On the accomplishment of subtask
t, the master will check all the subtasks in theChildren(t).
We put all the subtasks in the set

UtoR(t) =
{t′|t′ ∈ Children(t) ∧ (∀t′′ ∈ Parents(t′),
@Queue(t′′) = Unscheduled)}

into their Ready queue respectively. There are two threads for
a master. One of them is responsible for dispatching subtasks
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Fig. 5. An example task graph.

in the Ready queue onto slaves, while the other is to stage
subtasks from the Unscheduled queue to the Ready queue.

However, the M-S model will also fail to achieve effec-
tiveness under some cases. Consider the task graph shown
in Figure 5 (with the lengthl(t) of each subtask indicated).
Suppose inR1 = {r11}, R2 = {r21, r22}, R3 = {r31}, where
∀r ∈ Ω, p(r) = 1. From Figure 7 we can see that there should
be possibility of a parallelization between the two subtasks in
T1 with the length of 4 and the longest subtask inT3, namely
t32. However, by following the M-S model, the master have to
execute the subtasks inT1 sequentially (because there is only
one resource inR1), which holdst32 from being dispatched
earlier (due to its indirect dependency tot14).

A priority based mechanism is proposed in this paper to
deal with the above problem. In this mechanism, we assume
that it would be effective to bring forward the subtasks whose
children’s ancestors (refer to Figure 6) have been partially
finished or already being put into execution. Base on this
assumption, we define the priority of each subtask according
to how much its children’s ancestors have been finished.

Before we list the new algorithm, a termAncestors(t)
should be defined, which refers to all the subtasks thatt
directly or indirectly depends on:

Ancestors(t) =
{

φ, if Parents(t) = φ
(
⋃

t′∈Parents(t) Ancestors(t′)) ∪ Parents(t), otherwise

Also the term of the priority and two types of queues: Let
Pri(t) denotes the priority of subtaskt. Let the Ready
queue to be denoted byQR(Ti, 4), the Unscheduled queue
is denoted byQU (Ti, 4), where4 (x, y) is a binary relation
that ∀x, y = 1..N(Ti),

Pri(tix) ∗N(Ti) + x < Pri(tiy) ∗N(Ti) + y ⇔ tix 4 tiy

means lower the value ofPri(t), higher the priority. For both
the queues, thehead subtask is defined asHead(Q(T, 4)) =
t, wheret ∈ T ∧ (∀t′ ∈ T, @t′ 4 t). The head refers to the
subtask with the highest priority, and will be scheduled first.
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The priority of subtasks will be updated on the event of
any subtask being finished. As it is shown in Figure 6, once
a subtask has been finished, the master first collects all its
children into a set. Then it parses all the elements of the set.
For each children subtask, all its ancestors will receive an
unit-increment on their priority (namelyPri(t) = Pri(t) −
1). After the priority adjustment, the master will retrieve a
certain number of tasks, according to the allocation status,
from the head of the Ready queue and then dispatch them
into execution.

The new algorithm, denoted bypM-S, is listed below:

1) ∀t ∈ Γ, P ri(t) = 0. ∀Ti ∈ Γ, QR(Ti, 4) = {t|t ∈
Ti ∧ Parents(t) = φ}, QU (Ti, 4) = {t|t ∈ Ti ∧
Parents(t) 6= φ}.

2) For i = 1 to K, do

a) For j = 1 to N(Ri), if QR(Ti, 4) = φ then break
the current for-j-loop; if rij is not empty, continue
the current for-j-loop; or else dispatch the subtask
Head(QR(Ti,4)) to the resourcerij .

3) If all subtasks inΓ have been scheduled, then algorithm
ends;

4) Wait for the event of any subtask t’s execution being
finished;

5) For each subtaskτ ∈ ⋃
∀t′∈Children(t) Ancestors(t′),

Pri(τ) = Pri(τ)− 1;
6) Stage subtasks inUtoR(t) to their Ready queues re-

spectively, goto 2).

The right part of Figure 7 shows the schedule result pro-
duced by pM-S algorithm. It only costs 15 time units while
the M-S schedule costs 22.

IV. PERFORMANCE EVALUATION

In this section, we present the comparative evaluation of
static and dynamic algorithms (shuffle, xDCP, M-S and pM-
S). Also we adjust some parameters in the task graph config-
uration to investigate how the scheduling results vary. Finally,
we compare the algorithms for execution on several sample
task graphs of workflow applications. All the experimental
results are based on simulation. The workflows and resources
in our experiments are implemented following the definition
in section II.

A. Metrics and important factors

Since we use randomly generated task graphs in the experi-
ments with factors discussed in sub-section IV-B. Therefore a
statistical analysis will be adopted in this paper by calculating
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Fig. 7. Comparison of the finish time of subtasks in Figure 5 under M-S
model and pM-S model.

and presenting the mean value for a large number of scenarios.
Basically we have two metrics for this simulation.

Average Scheduling Effectiveness (ASE): The ASE refers
to a ratio (in the format of percentage) between the to-be-
measured algorithm and the shuffle algorithm in terms of
the simulated total execution time of the whole application
after the schedule. Lower the ASE value, higher the effective-
ness resulted. The total execution time equals to the value
of DCLP (f, Γ, Ω) in xDCP algorithm. Therefore in static
algorithm, we simply calculate DCLP value after the schedule
has been finished. In M-S and pM-S scheduling, we give each
subtask aTime-to-Live (TTL)value. All the subtasks that are
unscheduled or yet to complete their execution will be given a
negative TTL value. For a newly scheduled subtask, we set its
TTL value to its execution time on its target resource. Then
we look for the subtaskt in Γ with the lowest non-negative
(≥ 0) TTL value – the accomplishment oft will be the next
event. At this point, we subtract all subtasks’ TTL value by
TTL(t). And addTTL(t) to another value representing the
Totally Lapsed Time (TLT)which was set to 0 at the very
beginning of the schedule. At the end of the schedule, the
TLT value will be the total execution time of the application.

Average Beat-down Time (BDT): A beat-downof an algo-
rithm means the algorithm has produced the best scheduling
result out of all the to-be-measured algorithms under certain
task graph. For each experiment we try 30 randomly generated
task graphs. The algorithm which wins the lowest ASE in the
competition is supposed to have the highest BDT.

Since the complexity of algorithm DCP has been proven
to be O(n3) (n refers to the number of subtasks) and the
complexity of xDCP is on the same magnitude to DCP
whereas M-S and pM-S algorithms have the complexity of
O(n2/K) andO(n2) respectively (whereK is the number of



parameter-sweep type tasks).
There are also some important factors which can affect the

schedule effectiveness:
Range of subtask size (RSS) and of resource throughput

(RRT): The range of subtask size can be presented as the ratio
between the size of the longest subtasks and the shortest one
in the same parameter-sweep task, formally

RSS(Ti) =
maxτ∈Ti

{l(τ)}
minτ∈Ti

{l(τ)}

Let RSS = RSS(T1) = RSS(T2) = ... = RSS(TK). Also,
we have

RRT (Ri) =
maxγ∈Ri

{p(γ)}
minγ∈Ri

{p(γ)}

Let RRT = RRT (R1) = RRT (R2) = ... = RRT (RK).
We set the RSS and RRT as the boundary of generating
random task size and resource throughput. Then we multiply
the random value by a base value (each parameter-sweep task
has its own base valuēl for task andp̄ resource respectively),
to get the final value of individual subtask size and resource
throughput, namely

SubtaskSize = rand(1, RSS) ∗ l̄

ResourceThpt = rand(1, RRT ) ∗ p̄

Ratio #Subtask/#Resource (RSR): This ratio will also be
calculated inside the parameter-sweep task. As the value
of RSR increases, the size of resource queue will be also
increased.

Number of parameter-sweep tasks (#PST): As the workflow
has more and more parameter-sweep tasks (namely the task
graph owns more and more layers), the dependency structure
will get more complicated; a shuffle algorithm will leave more
gaps in its output schedule, hence the space for optimization
will be enlarged.

Average number of the dependencies per subtask (ADPS:
This value can be presented as:

ADPS =
∑

i=2..K N(D(Ti))∑
i=2..K N(Ti)

The indexi starts from 2 becauseT1 has no dependency at
all, thus it will not be counted in either the numerator or the
denominator. As the value of ADPS increases, the optimize-
ability of the task graph will be decreased, since more task
dependencies, more restrictions in task placement.

Task graph topology (TGT): It is evident that the topology
of task graph will affect greatly on the output schedule results.
However, it is difficult to adjust the TGT parametrically due
to the existence of too many factors. In subsection IV-C, we
will measure the algorithms under 6 representative sample task
graphs.

TABLE I

THE CONFIGURATION OF ALL THE MEASURED FACTORS.

Experiment #PST RSS RRT RSR ADPS l̄ p̄
#PST 3-12 5 5 5 2 20 10
RSS 5 1-10 5 5 2 20 10
RRT 5 5 1-10 5 2 20 10
RSR 5 5 5 1-10 2 20 10
ADPS 5 5 5 5 1.0-5.5 20 10

B. Measurement for randomly generated task graphs

First we consider about the randomly generated task graphs.
For fairness, the total number of subtasks is fixed at 512,
although the number of subtasks in each parameter-sweep
tasks might be randomly generated. The steps of generating
task graph is listed below:

1) Given #PST, generating subtasks by ensuring:

a) The total number of subtasks equals to 512;
b) The size of subtasks in the same parameter-sweep

task follows the given RSS;

2) Generating resources by ensuring:

a) The number of subtasks and resources in a
parameter-sweep task follows the given RSR;

b) The throughput of resources in the same parameter-
sweep task follows the given RRT;

3) Generating task dependencies, ensuring the given ADPS;
4) Run shuffle scheduling, calculating the DCLP value of

the output schedule.

For the random task graphs, we observe how the ASE
(Figure 8) and BDT (Figure 9) value varies with the factors
listed above, for the algorithm xDCP, M-S and pM-S. When
we change the value of a factor, the other factors will remain
constant at a default value. The configuration of all the factors
are shown in Table I. From the Figure 8, we can conclude:

1) The increment of #PST slightly raises the effectiveness
of algorithm M-S and pM-S, while drops the effective-
ness of algorithm xDCP.

2) The increment of RSS almost has no effect on the
effectiveness of algorithm M-S and pM-S, but slightly
raises the effectiveness of algorithm xDCP.

3) The increment of RRT raises the effectiveness of all the
three algorithms in a large extent.

4) The increment of RSR dramatically raises the effective-
ness of all the three algorithms.

5) The increment of ADPS drops the effectiveness of all
the three algorithms, but it affects to the xDCP more
than the other two algorithms.

By comparing algorithms in Figure 9, we find that in
most measured cases, the pM-S will be the best choice for
scheduling. However, under the cases of the #PST and RSR
decreases, or RRT increases to a certain value, or the ADPS
equals to 1, the xDCP may become more effective. That is,
the M-S algorithm is always not the best choice.
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Fig. 8. Average Scheduling Effectiveness (ASE) varies with PST, RSS, RRT, RSR and ADPS.
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C. Measurement for sample task graphs

In Figure 10, there are several sample task graphs listed.
Table II shows the configuration of these task graphs in our
experiments.

Parallel task graph (PTG). In parallel task graph, the
number of subtasks in each parameter-sweep task is the same
constantN , hence the total number of subtasks isN ∗K. For
task dependency, we have

Parents(tij) = {t(i−1)j}.
Of course,Parents(t1j) = φ.

Out-tree task graph (OTG). In OTG, the number of subtasks
in each parameter-sweep task isN(Ti) = λ(i−1), whereλ is
called thebranch numberand we suppose thatλ is constant
in each task graph. The total subtask number of an OTG is
λK−1. In Figure 10(b),λ = 2. For task dependency, we have

Parents(tij) = {t(i−1)((j−1)/λ+1)}.
In-tree task graph (ITG). In ITG, the number of subtasks

in each parameter-sweep task isN(Ti) = λ(K−i). The total
subtask number of an ITG is the same to an OTG with the
sameK andλ, that is,λK −1. For task dependency, we have

Parents(tij) = {t(i−1)x|λ(j − 1) < x ≤ λj}.
Densified out-tree task graph (DOTG). Densified tree is

actually not a tree structure, it is more like a trapezia. In
DOTG, the number of subtasks in each parameter-sweep task
can be defined in a recursive way: GivenN(T1) = N1,
N(Ti) = δ(N(Ti−1) − 1) + λ, where δ is called thestep
value. If tij ’s parents start att(i−1)k, then ti(j+1)’s parents
start at t(i−1)(k+δ). Here we define the task dependency in
DOTG:

Parents(tij) = {t(i−1)(x+1)|d
j − λ

δ
e ≤ x ≤ bj − 1

δ
c}.

Densified in-tree task graph (DITG). In DITG, the number
of subtasks in each parameter-sweep task can be defined in a
recursive way: GivenN(T1) = N1,

N(Ti) =
N(Ti−1)− λ

δ
+ 1.

The task dependency in DITG:

Parents(tij) = {t(i−1)x|δ(j − 1) + 1 ≤ x ≤ δ(j − 1) + λ}.
Composite task graph (CTG). Composite task graph is gen-

erated from two or more sets of the above sample frameworks.
In the example shown in Figure 10(f), the layerT1 → T2 is an
OTG with λ = 2, T2 → T3 is an OTG withλ = 3, T3 → T4

is an ITG withλ = 3, T4 → T5 is an ITG withλ = 2.
Figure 11 shows the comparison the ASE value of xDCP,

M-S and pM-S under the six sample task graph. Figure 12
shows the BDT value of the three algorithms. The BDT varies
in a larger extent than ASE.

We find that for all the tree-like task graphs (ITG, OTG,
DITG and DOTG), the effectiveness of algorithms on out-
trees are greater than the in-trees, especially for the xDCP

t
23


t
12
t
11
 t
13


t
21
 t
22
 t
23


t
31
 t
32
 t
33


t
11


t
21
 t
22


t
31
 t
32
 t
33
 t
34


t
12
t
11
 t
13
 t
14


t
21
 t
22


t
31


t
11


t
21
 t
22


t
31
 t
32
 t
33


t
41
 t
42
 t
43
 t
44


t
12
t
11
 t
13
 t
14


t
21
 t
22
 t
23


t
31
 t
32


t
41


t
41
 t
42
 t
43


t
11


t
21
 t
22


t
31
 t
32
 t
33
 t
34
 t
35
 t
36


t
41
 t
42


t
51


(a)


(b)
 (c)


(d)


(e)


(f)


t
12


t
34


t
45
 t
42


t
33


t
24


t
15


Fig. 10. Six sample task graphs: (a) a parallel task graph (PTG); (b) an
out-tree task graph (OTG); (c) an in-tree task graph (ITG); (d) a densified
out-tree task graph (DOTG); (e) a densified in-tree task graph (DITG); (f) a
composite task graph (CTG).
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TABLE II

CONFIGURATION OF ALL TASK GRAPHS INVOLVED IN THE EXPERIMENT.

TGT #PST RSS RRT RSR ADPS λ δ
PTG 12 5 5 6 1 — —
OTG(a) 10 5 5 10 1 2 —
ITG(a) 10 5 5 10 2 2 —
OTG(b) 7 5 5 10 1 3 —
ITG(b) 7 5 5 10 3 3 —
DOTG(a) 5 5 5 10 3 3 1
DITG(a) 5 5 5 10 3 3 1
DOTG(b) 5 5 5 10 2 4 2
DITG(b) 5 5 5 10 4 4 2
CTG 13 5 5 10 1-3-2 3-2 —

algorithm. This is because the ADPS value for OTGs and
DOTGs is less than it for ITGs and DITGs. For all OTGs, the
ADPS equals to 1 exactly, while for ITGs, the ADPS equals
to λ. For all DOTGs, the ADPS equals to

bj − 1
δ

c − dj − λ

δ
e+ 1,

while for DITGs, the ADPS equals to

δ(j − 1) + λ− δ(j − 1)− 1 + 1 = λ.

For scenario (a)(λ = 3, δ = 1), the ADPS of DOTG almost
equals to the ADPS of DITG (ADPS=3), therefore the ASE
has no distinct difference. But for scenario (b)(λ = 4, δ = 2),
the ADPS of DITG (ADPS=4) is greater than the average
ADPS of DOTG (ADPS=2), therefore the ASE of DITG is
remarkably higher than it of DOTG, means the effectiveness
of all the algorithms drops.

For tree task graphs (ITG and OTG), comparing the con-
figuration of (a) and (b), we found that the value of #PST
has been decreased, and the value of ADPS of DITGs has
been increased. According to Figure 8, the ASE value of all
the algorithms (at least, for M-S and pM-S) should slightly
decrease, which is consistent with the Figure 11.

For parallel graph PTG and out-tree graph OTGs, the re-
sulting ASE value of algorithm M-S and pM-S are completely
equal, means they have drawn the same schedule result. This is
easy to justify because in these task graphs, every subtask has
only one parent. Therefore the priority in pM-S can only be
given to the subtasks that are already finished their execution,
hence will not do any help in the scheduling.

V. RELATED WORK

In [18], a dynamic, adaptive algorithm is proposed for
adjusting the scheduling queue in Grid based task farming
applications. The algorithm can keep the queue size to fit the
computational capability of current environment. This is a type
of implementation of the M-S algorithm, and can certainly be
also adopted in our pM-S algorithm.

A pipeline model has been proposed in [19] for task farming
in Grid. However, the mechanism it discusses is actually
conventional Master-Slave based, with no priority involved.
According to the experiment results in section IV, there is
still a gap between the effectiveness of M-S and our pM-S

algorithm. Also, [19] has not mentioned about optimizing the
scenario of multiple parameter-sweep tasks linked together.

The work in [20] focuses on how many slave resources
needed in a task farming application where the number
of subtasks is given, to achieve the certain effectiveness.
Several factors are used to construct the model, including
”the workload defined as the work percentage done when
executing the largest 20% subtasks”, as well as ”the variance
of the size among the largest 20% subtasks”. Also it gives
a heuristic algorithm for optimizing (1) the number of slaves
(2) the task allocation. Similarly, in this paper we use more
elaborate factors like RSS (variance of size of subtasks), RRT
(variance of throughput of resources) and RSR (how many
slave resources need for a parameter-sweep task) to establish
our metrics model, in order to give more precise evaluation
on the algorithm’s effectiveness.

In [21], a model of Resource Efficiency (RE) is given to
help evaluating the effectiveness of task farming scheduling
algorithms. In our work, we use the average ratio (ASE)
between the total waiting time of the to-be-measured algorithm
and the shuffle algorithm. Here the performance of shuffle
algorithm is regarded as the basic performance under a specific
configuration (includes the value of all the factors, and the
topology of the task graph). The ASE then represents the
reciprocal of the speedup. We adopt ASE value instead of
RE because even under the same configuration of factors,
the topology of task graph might still result a remarkable
influence on the performance of algorithms, hence gives the
distribution of waiting time a large deviation and makes the
average value meaningless. By using ASE, the influence of
task graph topology could be shielded by the performance of
the shuffle algorithm, hence will do little interference on the
evaluation result.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented two algorithms that address
the problem of optimal scheduling of workflow applications
with parameter-sweep tasks. The experiment results shown in
section IV have indicated the effectiveness of the proposed
algorithms. Also, we compared the algorithms under differ-
ent configuration and sample task graphs, which shows our
effort on comprehensively examining the useability of each
algorithm.

In the paper, we assume every parameter-sweep task con-
sume its resource array exclusively. This constraint can be
removed by letting each task of workflow utilize multiple
resources from Grid resource space. Of course, we can assume
that the resources are able to allocate fixed throughput to
each parameter-sweep task consuming them, which makes
the resource itself could be logically regarded as multiple
sets of resources with each being allocated to different tasks.
However, in real scheduling, resources may not treat different
tasks separately. Instead, all the subtasks may be put into the
same queue under the scheduling of an unique algorithm. This
makes the scheduling optimization more complicated, because
the algorithm need to consider not only the transverse subtasks



in the same parameter-sweep task, but also vertical subtasks
sharing the same set of resources.

ACKNOWLEDGMENT

We would like to thank Srikumar Venugopal, Shushant
Goel, Jia Yu and Prof. Chen-Khong Tham for their critical
comments that helped us in improving the quality of paper
presentation.

REFERENCES

[1] D. Bhardwaj, J. Cohen, S. McGough, and S. Newhouse. A Componen-
tized Approach to Grid Enabling Seismic Wave Modeling Application.
The International Conference on Parallel and Distributed Computing,
Applications and Technologies (PDCAT), Singapore, Dec. 2004.

[2] C F Sanz-Navarro, S D Kenny, S M Pickles, and A R Porter. Real-
time Visualization and Computational Steering of Molecular Dynamics
simulations of Materials Science.Proceedings of the UK e-Science All
Hands Meeting, 31st August - 3rd September, 2004.

[3] Meichun Hsu, editor.Special Issue on Workflow and Extended Transac-
tion Systems, volume 16(2) of Bulletin of the IEEE Technical Committee
on Data Engineering. June 1993.

[4] F. Leymann and W. Altenhuber, Managing business processes as infor-
mation resources,IBM Systems Journal 33(2) (1994)326 - 348.

[5] A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A. Lamnitchi,
C. Kesselman, P. Kunst, M. Ripeanu, B. Schwartzkopf, H. Stockinger,
K. Stockinger, and B. Tierney. Giggle : A Framework for Constructing
Scalable Replica Location Services. InSupercomputing (SC2002), Balti-
more, USA: IEEE Computer Society, Washington, DC, USA, November
16-22, 2002.

[6] Z. Guan, F. Hernandez, P. Bangalore, J. Gray, A. Skjellum, V.
Velusamy, Y. Liu. Grid-Flow: A Grid-Enabled Scientific Workflow
System with a Petri Net-based Interface.Technical Report, Dec. 2004.
http://www.cis.uab.edu/gray/Pubs/grid-flow.pdf

[7] E. Deelman, J. Blythe, Y. Gil, and C. Kesselman. Workflow Management
in GriPhyN. The Grid Resource Management, Kluwer, Netherlands,
2003.

[8] J. Cardoso. Stochastic Workflow Reduction Algorithm.Technical Re-
port, LSDIS Lab, Department of Computer Science University of
Georgia, 2002.

[9] D. Abramson, J. Giddy and L. Kotler. High Performance Parametric
Modeling with Nimrod/G: Killer Application for the Global Grid?
IPDPS 2000, Cancun, Mexico, 2000.

[10] Y.K. Kwok and I. Ahmad, ”Dynamic Critical-Path Scheduling: an
Effective Technique for Allocating Task Graphs to Multiprocessors”,
IEEE Transaction on Parallel and Distributed Systems, V7, N5, 1996,
pp. 506-521.

[11] G. Riccardi, B. Traversat, U. Chandra, A Master-Slaves Parallel Com-
putation Model,Supercomputer Research Institute Report, Florida State
University, June 1989.

[12] J. Yu and R. Buyya: A Novel Architecture for Realizing Grid Workflow
using Tuple Spaces.GRID 2004: 119-128.

[13] L. Wang, H. J. Siegel, V. P. Roychowdhury and A. A. Maciejewski. Task
Matching and Scheduling in Heterogeneous Computing Environments
Using a Genetic-Algorithm-Based Approach.Journal of Parallel and
Distributed Computing, Special Issue on Parallel Evolutionary Comput-
ing, Vol. 47, No. 1, Nov. 1997, pp. 8-22.

[14] Shanshan Song, Yu-Kwong Kwok, Kai Hwang: Security-Driven Heuris-
tics and A Fast Genetic Algorithm for Trusted Grid Job Scheduling.
IPDPS 2005, Denver, Colorado, USA, Apr. 2005.

[15] Soumya Sanyal, Sajal K. Das: MaTCH : Mapping Data-Parallel Tasks
on a Heterogeneous Computing Platform Using the Cross-Entropy
Heuristic. IPDPS 2005, Denver, Colorado, USA, Apr. 2005.

[16] D. Nicol and J. Saltz. Dynamic remapping of parallel computations with
varying resource demands.IEEE Transaction on Computers, 37(9):1073-
1087, 1988.

[17] D. Brent Weatherly, David K. Lowenthal, Mario Nakazawa, Franklin
Lowenthal: Dyn-MPI: Supporting MPI on Non Dedicated Clusters.SC
2003, Phoenix, Arizona, USA, Nov. 2003.

[18] H. Casanova and M. Kim and J. S. Plank and J. Dongarra. Adaptive
Scheduling for Task Farming with Grid Middleware.5th International
Euro-Par Conference, Toulouse, Aug 1999.

[19] D. Churches, G. Gombas, A. Harrison, J. Maassen, C. Robinson, M.
Shields, I. Taylor and I. Wang. Programming Scientific and Distributed
Workflow with Triana Services. InGrid Workflow 2004 Special Issue of
Concurrency and Computation: Practice and Experience, 2005.

[20] M. A. Robers, L. P. Kondi, and A. K. Katsaggelos. SNR scalable video
coder using progressive transmission of DCT coefficients.Proc. SPIE,
pp. 201–212, 1998.

[21] G. Shao, R. Wolski, F. Berman. Performance effects of scheduling
strategies for master/slave distributed applications. InProc. PDPTA’99,
CSREA, Sunnyvale, CA, 1999.


