GridSim:
"Java-based Modelling and Simulation of Deadline and Budget-based Scheduling for Grid Computing"

Rajkumar Buyya and Manzur Murshed

Monash University,
Melbourne, Australia

www.buyya.com/ecogrid
Simulation Parameters

- **Resources**
 - Speed: 0.5 to 1.5 (1, standard machine. normal distribution for speed).

- **Users:**
 - Users job contains 20 tasks with variation of +/-2 with random submission.
 - Users submitted jobs only after completion of previous job.

- **Jobs = 20 tasks**
 - Each task takes 50 units.
 - Heterogeneous tasks (future)

- **Simulation Time = 7*60*60 units (approx. 7 hours).**

- As the number of users grows, the probability of getting at least one resource per user, throughout the deadline, decreases.

- This low probability demands high (>> 1) D_{Factor} and B_{Factor} in order to achieve very high job completion rate.
D-Factor

\[Job_Time_{\text{MAX}} = \text{Time to process all the tasks, serially, using the slowest resource} \]

\[Job_Time_{\text{MIN}} = \text{Time to process all the tasks, in parallel, giving the fastest resource the highest priority} \]

\[D_\text{Factor} = \frac{\text{Deadline} - Job_Time_{\text{MIN}}}{Job_Time_{\text{MAX}} - Job_Time_{\text{MIN}}} \]

- Any job with \(D_\text{Factor} < 0 \) would never be completed
- As long as some resources are available throughout the deadline, any job with \(D_\text{Factor} \geq 1 \) would always be completed
B-Factor

\[Job_{Cost}^{MAX} = \text{Cost to process all the tasks, in parallel within deadline, giving the costliest resource the highest priority} \]

\[Job_{Cost}^{MIN} = \text{Cost to process all the tasks, in parallel within deadline, giving the cheapest resource the highest priority} \]

\[
B_Factor = \frac{Budget - Job_{Cost}^{MIN}}{Job_{Cost}^{MAX} - Job_{Cost}^{MIN}}
\]

- Any job with \(B_Factor < 0 \) would never be completed.
- As long as some resources are available throughout the deadline, any job with \(B_Factor \geq 1 \) would always be completed.
Users=21, Resources=25, Optimization: TIME

Job completion rate (%)
Users=21, Resources=25, Optimization: TIME
Budget Utilisation & Time Optimise

Users = 21, Resources = 25, Optimization: TIME

Budget Utilization (%) vs. B-factor (%) and D-factor (%)
Job Completion & Cost Optimise

Users=21, Resources=25, Optimization: COST

Job completion rate (%)
Time Utilisation & Cost Optimise

Users=21, Resources=25, Optimization: COST
Budget Utilisation & Cost Optimise

Users=21, Resources=25, Optimization: COST
Job Completion for Optimise Time

B-factor = D-factor = 110%, Optimization: TIME

Job completion rate (%)
Time Utilisation for Optimise Time

B-factor = D-factor = 110%, Optimization: TIME
Budget Utilisation for Optimise Time

B-factor = D-factor = 110%, Optimization: TIME
Job Completion for Optimise Cost

B-factor = D-factor = 110%, Optimization: COST

Job completion rate (%)
Time Utilisation for Optimise Cost

B-factor = D-factor = 110%, Optimization: COST
Budget Utilisation for Optimise Cost

B-factor = D-factor = 110%, Optimization: COST