Introduction

- Getting started is the most difficult part of any new process.
- In software modelling, the first thing you need to do is understand what are you going to model and ultimately develop.
- Creating a highest form details about a system-use case diagram—is an almost natural point of origin for the software design.
- A use case diagram is an excellent way to communicate to management, customers, and other non-development people what a system will do when it is completed.

University Record System (URS)

- A University record system should keep information about its students and academic staff.
- Records for all university members are to include their id number, surname, given name, email, address, date of birth, and telephone number.
- Students and academic staff each have their own unique ID number: studN (students), acadN (academic employee), where N is an integer (N>0).
- In addition to the attributes mentioned above:
 - Students will also have a list of subjects they are enrolled in. A student cannot be enrolled in any more than 10 subjects.
 - Academic employees will have a salary, and a list of subjects they teach. An academic can teach no more than 3 subjects.

Some Actions Supported by URS

- The system should be able to handle the following commands.
 - Add and remove university members (students, and academic staff)
 - Add and Delete subjects
 - Assign and Un-assign subjects to students
 - Assign and Un-assign subjects to academic staff.

Use Case Diagrams

- Use Case diagrams show the various activities the users can perform on the system.
 - System is something that performs a function.
 - They model the dynamic aspects of the system.
 - Provides a user's perspective of the system.
Use Case Diagrams

- A set of **ACTORS**: roles users can play in interacting with the system.
- An actor is used to represent something that users our system.
- A set of **USE CASES**: each describes a possible kind of interaction between an actor and the system.
- Uses cases are actions that a user takes on a system
- A number of **RELATIONSHIPS** between these entities (Actors and Use Cases).
- Relationships are simply illustrated with a line connecting actors to use cases.

Use Case Diagrams - Actors

- An **actor** is a user of the system playing a particular role.
- Actor is shown with a stick figure.

Use Case Diagrams – Use Cases

- Use case is a particular activity a user can do on the system.
- Is represented by an ellipse.
- Following are two use cases for a library system.

Use Case Diagram – Example1 (Library)

Use Case Diagram for Student Assessment Management System

Use Case Vs Scenarios

- Each use case is one or more scenarios.
- Add Subject Use Case:
 - Scenario 1: Subject gets added successfully.
 - Scenario 2: Adding the subject fails since the subject is already in the database.
- Enroll Subject Use Case:
 - Scenario 1: Student is enrolled for the subject.
 - Scenario 2: Enrollment fails since the student is already enrolled in the subject.
- Each scenario has a sequence of steps.
Scenarios

- Each scenario has a sequence of steps.
 - Scenario 1: Student is enrolled for the subject.
 - Student chooses the “enroll subject” action.
 - Check the student has enrolled in less than 10 subjects.
 - Check if the subject is valid.
 - Assign the subject to the student.

- Scenario 2: Enrolling fails since the student is already enrolled in 10 subjects.
 - Student chooses the “enroll subject” action.
 - Check the student has enrolled in less than 10 subjects.
 - Return an error message to the student.

Use Case Diagrams - Relationships

- Inclusion
 - Inclusion enables to reuse one use case’s steps inside another use case.

- Extension
 - Allows creating a new use case by adding steps to existing use cases.

- Generalization
 - Allows child use cases to inherit behavior from parent use cases.
Use Case – Example (self service machine – generalize relationship): Actor-to-Actor relationship

- Supplier Agent
- Collector
- Restocker

Use Case – Example (self service machine – generalize relationship): Actor-to-Actor relationship – example 2

- Cook
- Mom Cook
- Father Cook

Identify Classes (Extract Nouns)

- A University record system should keep information about its students and academic staff.
- Records for all university members are to include their ID number, surname, given name, email, address, date of birth, and telephone number.
- Students and academic staff each have their own unique ID number: studN (students); acadN (academic employee), where N is an integer (N > 0).
- In addition to the attributes mentioned above:
 - Students will also have a list of subjects they are enrolled in. A student cannot be enrolled in any more than 10 subjects.
 - Academic employees will have a salary, and a list of subjects they teach. An academic can teach no more than 3 subjects.

Nouns which are potential classes

- A University record system should keep information about its students and academic staff.
- Records for all university members are to include their ID number, surname, given name, email, address, date of birth, and telephone number.
- Students and academic staff each have their own unique ID number: studN (students); acadN (academic employee), where N is an integer (N > 0).
- In addition to the attributes mentioned above:
 - Students will also have a list of subjects they are enrolled in. A student cannot be enrolled in any more than 10 subjects.
 - Academic employees will have a salary, and a list of subjects they teach. An academic can teach no more than 3 subjects.
Classes identified in the first pass

- UniversityRecordSystem - URS
- Student
- Academic Staff
- UniversityMembers
- Subject

URS - High Level Class Diagram