Artificial Intelligence (AI)-Centric Management of Resources in Modern Distributed Computing Systems

Shashikant Ilager¹, Rajeev Muralidhar¹,², Rajkumar Buyya¹

¹Cloud Computing and Distributed Systems (CLOUDS) Laboratory
School of Computing and Information Systems
The University of Melbourne, Australia
²Amazon Web Services (AWS), Australia

Abstract—Contemporary Distributed Computing Systems (DCS) such as Cloud Data Centers are large scale, complex, heterogeneous, and are distributed across multiple networks and geographical boundaries. On the other hand, Internet of Things (IoT)-driven applications are producing a huge amount of data that requires real-time processing and fast response. Managing these resources efficiently to provide reliable services to end-users or applications is a challenging task. The existing Resource Management Systems (RMS) rely on either static or heuristic solutions that are inadequate for such composite and dynamic systems. The advent of Artificial Intelligence (AI) and the availability of data manifested into possibilities of exploring data-driven solutions in RMS tasks that are adaptive, accurate, and efficient. In this regard, this paper aims to draw the motivations and necessities for data-driven solutions in resource management. It identifies the challenges associated with it and outlines the potential future research directions detailing where and how we can apply the data-driven techniques in the different RMS tasks. Finally, it provides a conceptual data-driven RMS model for DCS and presents the two real-time use cases demonstrating the feasibility of AI-centric approaches.

Index Terms—Distributed Computing, Resource Management, AI Techniques, Edge Computing, Cloud Computing

I. INTRODUCTION

Internet-based Distributed Computing Systems (DCS) have become an essential backbone of the modern digital economy, society, and industrial operations. The emergence of the Internet of Things (IoT), diverse mobile applications, smart grids, smart industries, and smart cities, has resulted in massive amounts of data being generated and has thus increased the demand for computing resources [1]. According to the report from Norton [2], it is expected that 21 billion IoT devices will be connected to the internet by 2025, creating huge economic opportunities. Computing models such as Cloud and Edge computing have revolutionized the way services are delivered and consumed by providing flexible on-demand access to services with a pay-as-you-go model. In addition, a new application and execution models like micro-services and serverless or Function as Service (FaaS) computing [3] are becoming mainstream that greatly reduces the complexities in the design and deployment of software components. On the other hand, this increased connectivity and heterogeneous workloads demand distinct Quality of Service (QoS) levels to satisfy their application requirements[4], [5], [6]. These developments have led to building hyper-scale data centers and complex multi-tier computing infrastructures that require new innovative approaches in managing resources efficiently and provide reliable services. Deployment of 5G and related infrastructures like dynamic network slicing for high bandwidth, high throughput, and low latency applications has only increased the challenges.

Resource Management Systems (RMS) in DCS’s are middleware platforms that perform different tasks such as resource provisioning, monitoring, workload scheduling, and many others. Building an efficient RMS for the present and imminent distributed systems are challenging due to many reasons. Especially, the new class of applications, networks, and Cyber-Physical-Systems (CPS) are enormously complex and hard to manually fine-tune their parameters. For example, ‘Just 10 pieces of equipment, each with 10 settings, would have 10 to the 10th power, or 10 billion, possible configurations — a set of possibilities far beyond the ability of anyone to test for real’ [7], [8]. The emerging network technologies, including 5G and satellite networks, such as Amazon’s Project Kuiper and SpaceX’s StarLink have opened up new dimensions [9] and opportunities for developing advanced applications that require high bandwidth, high availability and low latency. In addition, the availability of huge data and advancement in computing capabilities has witnessed the resurgence of Artificial intelligence (AI) techniques driving innovation across different domains such as healthcare, autonomous driving, and robotics [9], [10]. Training AI models itself consumes huge resources and is increasing exponentially and doubling every 3.4 months for the largest AI models (compared to Moore’s ‘Law’ 2-year doubling period) [7]. To accommodate these rapid changes across different domains, the required resources (compute, network, storage) are delivered through cloud and edge that are highly distributed, large scale and contain numerous resources. Furthermore, the heterogeneity and presence of multi-tenancy in these platforms with different users having diverse workload characteristics executing a wide variety of applications add-ons more challenges for RMS. Thus, providing the performance requirements in such a shared environment and also increasing resource utilization is a critical problem [11].
The existing RMS techniques from operating systems to large scale DCS’s are predominantly designed and built using preset threshold-based rules, or heuristics. These solutions are static and often employ reactive solutions [12], and generally works well in the general case but cannot adjust to the dynamic contexts [13]. Moreover, once deployed, they considerably fail to adapt and improve themselves in the run-time. In complex dynamic environments (such as Cloud and Edge), they are incapable of capturing the infrastructure and workload complexities and hence fall through. Consequently, the AI-centric approaches built on actual data and measurements collected from respective DCS environments are more promising, perform better, and adapt to dynamic contexts. Unlike heuristics, these are data-driven models built based on historical data. Accordingly, AI-centric methods can employ proactive measures by foreseeing the potential outcome based on current conditions. For instance, a static heuristic solution for scaling the resource uses workload and system load parameters to trigger the scaling mechanism, however, this reactive scaling diminishes the users’ experience for a certain period (due to time required for system boot-up and application trigger). Consequently, an AI-centric RMS enabled by data-driven Machine Learning (ML) model can predict the future workload demand and scale up or scale down the resources beforehand as needed. Such techniques are highly valuable for both users to obtain better QoS and for service providers to offer reliable services and retain their business lead in the market. Moreover, the data-driven RMS’s decisions and policies can be continuously improved with techniques like Reinforcement Learning (RL) [13], [14] that uses the monitoring and feedback data in run-time, responding to the current demand, workload, and underlying system status.

AI-centric RMS in DCS is more feasible now than ever for multiple reasons. First, AI techniques have matured and have proven to be efficient in many critical domains such as computer vision, natural language processing, healthcare applications, and autonomous vehicles. Second, most DCS platforms produce enormous amounts of data that are currently pushed as logs for debugging purposes or failure-cause explorations. For example, Cyber-Physical-Systems (CPS) in data centers already have hundreds of onboard CPU and external sensors monitoring workload, energy, temperature, and weather parameters. Such data can be effectively used to build ML models cost-effectively. Finally, the current increasing scale in computing infrastructure and its complexities require automated systems that can produce the decisions based on the data and key insights from the experience for which AI models are ideal.

In this regard, this paper makes the following key contributions: (1) presents evolution and the state-of-the-art RMS techniques in DCS, (2) enlists the challenges associated with data-driven RMS methods, (3) identifies the future research directions and point out the different tasks in which AI-centric methods can be efficiently applied and benefited from, (4) proposes a conceptual data-driven RMS model, and (5) demonstrates two real-time use-cases applying data-driven AI methods (related to energy-efficient GPU clock configurations and management of resources in data centers).

The rest of the paper is organized as follows. Section II gives an overview of DCS evolution and state-of-the-art practices in RMS. Section III identifies the challenges associated with data-driven methods. Section IV draws Future research directions. In Section V, a conceptual AI-centric RMS model is presented, and Section VI demonstrates the feasibility of AI-centric methods using two real-time use cases. Finally, the conclusion is drawn in Section VII.

II. DCS Evolution and the State-of-the-Art

An overview of the evolution of major DCS’s is given in Figure 1. Early cluster and supercomputing systems have been widely used in the scientific domain where applications are composed into parallel tasks (distributed jobs in grid computing) and executed on one or multiple clusters. The development of service-orientated computing technologies (Web services, REST, SOAP, etc.), virtualization technologies, and demand for utility-oriented services created the current Cloud computing-based data centers. However, the next decade of DCS’s will be driven by IoT-based applications and scenarios that need to process the enormous amount of data and derive meaningful intelligence from it. These IoT-based applications composing of numerous sensors and computing nodes distributed across different network layers from Edge to remote Cloud requires an autonomic sense-connect-actuate model [1] where application tasks are composed, deployed, and executed autonomously. This demands additional machine-to-machine interactions (compared to the current human-to-machine interactions) compelling rapid resource provisioning, scheduling, and task execution along with managing application’s demand for QoS and low latency.

In parallel to system advancements, application models have continued to evolve and create new software design patterns like micro-services and execution models like serverless or Function as Service (FaaS) computing. To that end, managing these modern resources and applications requires intelligent decisions enabled from the AI-centric solutions. Although AI techniques can be applied in different computing paradigms and DCS platforms, in this paper, we mainly focus on the Cloud and Edge and keep our discussions and illustrations around these two important paradigms.

With increased scale and complexities of the next generation, DCS’s, traditional static or heuristics solutions are becoming inadequate as these methods require careful hand pruning and human intervention to adapt to the dynamic environments [13]. Consequently, AI-centric data-driven solutions are promising and there have been many attempts in recent years to address the resource management problems using the data-driven ML solutions [12]. For example, Google has achieved a 40% efficiency in managing its cooling infrastructure using simple ML techniques and learning from historical data [15]. Many other techniques explored problems such as device placement, scheduling, and application scaling using data-driven methods [16], [17]. At the system architecture level,
Fig. 1: An overview of contemporary DCS evolution. (Timeline shows approximate time of the genesis of the system and evolved as mainstream with some overlapping’s. The points shown for all dimensions are representative but not exhaustive and only lists the important facets.)

[18] used massive data sets of hardware performance counter profiles collected at the data center level to reason about specific patterns that affect the front-end performance of large servers in Google data centers and used this data to mitigate front-end stalls of such warehouse-scale systems. However, data-driven AI solutions for RMS are in its superficial stage and require meticulous attention to address the challenges they pose and simultaneously identify potential avenues in which these methods can be incorporated. Moreover, it is important to build the general frameworks and standards to adopt AI solutions in resource management that are scalable and manageable.

III. Challenges

In this section, we identify and describe the critical issues associated with the adoption of AI solutions in the resource management of distributed computing systems.

A. Availability of Data

The success of machine learning techniques is determined by the quality of the data used to train the models. The features in data should be available in large quantities with proper preprocessing from the expert domain knowledge [19], [20]. Within DCS, multiple challenges exist concerning the availability of such data. First, currently, different resource abstraction platforms collect the data at different granularity. The physical machine-level data from on-board sensors and counters is gathered and accessed by tools like Intelligent Platform Management Interface (IPMI), while at a higher abstraction level, middleware platforms collect data related to workload level, user information, and surrounding environmental conditions (temperature, cooling energy in the data center). Also, network elements such as SDN controllers collect data related to network load, traffic, and routing. Unifying these data together and preprocessing it in a meaningful way is a complex and tedious task as the respective tools gather...
the data in a different format without common standards between them. Hence, building data-pipelines combining different subsystems data is crucial for the flexible adoption of ML solutions. Secondly, current monitoring systems collect data and push them into logging repositories only to be used later for debugging. However, converting this data for ML-ready requires monotonous data-engineering. Hence, future systems should be explicitly designed to gather the data that can be directly fed to the ML models with minimal data engineering and preprocessing effort. Lastly, although there are several publicly available datasets representing workload traces, there are hardly any public datasets available that represent different infrastructure including physical resource configurations, energy footprints, and several other important parameters (due to privacy and NDAs). Therefore, getting access to such data is a challenge and needs collaborative efforts and data management standards from the relevant stakeholders. Moreover, requiring standardized data formats and domain-specific frameworks [21].

B. Managing the Deployment of Models

Training ML models and inference in runtime needs an expensive amount of computational resources. However, one important challenge is to manage the life cycle of ML models including deciding how much to train, where to deploy the training modules in multi-tier computing architectures like Edge/Fog. As resources have limited capabilities at a lower level and should be allocated to needful applications, if these scarce resources are predominantly used to train models or run the RL agents, the latency-sensitive applications will experience resource starvation. On the other hand, if the models (RL agents) are trained or deployed in resource enriched cloud, the latency to push the inference decisions or the runtime feedback data to edge nodes shoots up, thus creating a delay-bottlenecks in RMS decisions. Furthermore, ML models tend to learn too much with the expense of massive computational resources. Therefore, the innovative solutions are needed to decide how much learning is sufficient based on specific constraints (resource budget, time-budget, etc.) and to estimate context-aware adaptive accuracy thresholds of ML models [22]. To overcome this, techniques like transfer learning, distributed learning can be applied to reduce computational demands [20]. In addition, the inference can be done on dedicated CPUs, GPUs, and domain-specific accelerators like Google TPU, Intel Habana, and FPGAs (Azure). Workload.

C. Non-Deterministic Outputs

Unlike statistical models that are analogous for its deterministic outputs, ML models are intrinsically exploratory and depend on stochasticity for many of its operations, thus producing the non-deterministic results. For example, the cognitive neural nets which are basic building blocks for many regressions, classification, and Deep Learning (DL) algorithms primarily rely on the principles of stochasticity for different operations (stochastic gradient descent, exploration phase in RL). When run multiple times with the same inputs, they tend to approximate the results and produce different outputs [10]. This may pose a serious challenge in the DCS such as Edge and Clouds where strict Service Level Agreements (SLAs) govern the delivery of services requiring deterministic results. For example, if a service provider fixes a price based on certain condition using ML models, consumers expect the price should be similar in all the time under similar settings. However, ML models may have a deviation in pricing due to stochasticity creating the transparency issues between users and service providers. Many recent works have focused on this issue introducing techniques like induced constraints in neural nets to produce the deterministic outputs [23], yet, stochasticity in ML model is inherent and requires careful monitoring and control over its output.

D. Black Box Decision Making

The ML models’ decision-making process follows a completely black-box approach and fails to provide satisfactory reasons for its decisions. The inherent probabilistic architectures and enormous complexities within ML models make it hard to evade the black-box decisions. It becomes more crucial in an environment such as DCS where users expect valid feedback and explanation for any action taken by the service provider. This is instrumental to build the trust between service providers and consumers. For instance, in case of a high overload condition, it is usual that service provider shall preempt few resources from certain users with the expense of certain SLA violations, however, choosing which users’ resources should be preempted is crucial in business-driven environments, this requires fairness and simultaneously providing the valid reasons. Many works have been undertaken to build the explanatory ML models (Explainable AI- XAI) to address this issue [24], [25]. However, solving this acceptably remains a challenging task.

E. Lightweight and Meaningful Semantics

The DCS environment having heterogeneous resources across the multi-tiers accommodates different application services. To efficiently manage the resources, RMS should have interaction between different resources, entities, and application services. However, these requisites semantic models that represent all these different entities meaningfully. Existing semantic models are either heavy or inadequate for such complex environments. Therefore, lightweight semantic models are needed to represent the resource, entities, applications, and services without introducing the overhead [26].

F. Complex Network Architectures, Overlays, Upcoming Features

Network architectures across DCS and telecom networks are evolving rapidly using software-defined infrastructure, hierarchical overlay networks, Network Function Virtualization (NFV), and Virtual Network Functions (VNF). Commercial clouds like those of Amazon, Google, Microsoft have recently also partnered with telecom operators around the world to deploy ultra-low latency infrastructure (AWS Wavelength and
Azure Edge Zone, for example) for emerging 5G networks. The explosion of data from these 5G deployments and resource provisioning for high bandwidth, throughput, and low latency response through dynamic network slicing requires a complex orchestration of network functions [27].

RMS in future DCS needs to consider these complex network architectures, the overlap between telecom and public/private clouds and service function orchestration to meet end-to-end bandwidth, throughput, and latency requirements. These architectures and implementations, in turn, generate enormous amounts of data at different levels of the hierarchical network architecture. As different types of data are generated in different abstraction levels, standardized well-agreed upon data formats and models for each aspect need to be built.

G. Performance, Efficiency, and Domain Expertise

Many ML algorithms and RL algorithms face performance issues like a cold-start problem. Specifically, RL algorithms spend a vast amount of the initial phase in exploration before reaching its optimal policies creating an inefficient period where the decisions are suboptimal, even completely random or incorrect leading to massive SLA violations [20]. RL-based approaches also face several challenges in the real world including: (1) need for learning on the real system from limited samples (2) safety constraints that should never or at least rarely be violated, (3) need of reward functions that are unspecified, multi-objective, or risk-sensitive, (4) inference that must happen in real-time at the control frequency of the system [28]. In addition, AI models are compute-heavy and designed with a primary focus on accuracy-optimization resulting in a massive amount of energy consumption [7]. Consequently, new approaches are needed to balance the trade-offs between accuracy, energy, and performance overhead. Furthermore, current ML algorithms including neural network architectures/ libraries are primarily designed to solve the computer vision problems. Adapting them to RMS tasks needs some degree of transformation of the way input and outputs are interpreted. Currently, many AI-centric RMS algorithms transform their problem space and further use simple heuristics to interpret the result back and apply to the RMS problems. Such complexities demand expertise from many related domains. Thus, newer approaches, algorithms, standardized frameworks, and domain-specific AI frameworks are required for efficient adoption AI in RMS.

IV. Future Research Directions

Despite the challenges associated, AI solutions provide many opportunities to incorporate these techniques into RMS and benefit from them. In this section, we explore different avenues where AI techniques can be applied in the management of distributed systems resources.

A. Data-driven Resource Provisioning and Scheduling

Resource provisioning and scheduling are a basic element of an RMS. Usually, resources are virtualized, and specifically, computing resources are delivered as Virtual machine (VM) or lightweight containers. The problems related to provisioning such as estimating the number of resources required for an application, co-locating workloads based on their resource consumption behaviors and several others can be addressed using AI techniques. These techniques can be extended to special case provisions such as spot instances. Utilizing spot instances for application execution needs careful estimation of application run time (to avoid the state corruption or loss of computation if resources are preempted) and accordingly deciding resource quantity and check pointing logic. It may require building prediction models based on previous execution performance counters or correlating with clusters based on existing knowledge base [29].

In edge computing environments, RMS should utilize resources from multi-tier infrastructure, and selecting nodes from different layers also requires intelligence and adaptation to application demands and infrastructure status. Furthermore, data-driven AI solutions can be employed in many scheduling tasks such as finding an efficient node, VM consolidation, migration, etc. The prediction models’ historical data and adaptive RL models can be used to manage dynamic scheduling and resource provisioning.

B. Managing Elasticity using Predictive Analytics

Elasticity is an essential feature providing flexibility by scaling up or scaling down the resources based on applications QoS requirements and budget constraints. Current approaches in elasticity are based on the reactive methods where resources are scaled according to the system load (in terms of the number of users or input requests). However, such reactive measures diminish the SLAs due to bootup time and swift burst loads. In contrast, forecasting the future load based on the application’s past usage behaviors and proactively scaling the resources beforehand vastly improves SLAs and saves costs. Essentially, it needs time series analysis to predict future load using methods like ARIMA or more advanced RNN techniques such as LSTM networks that are proven to be efficient in capturing the temporal behaviors [30]. Such proactive measures from service providers enable efficient management of demand response without compromising the SLAs.

C. Energy Efficiency and Carbon footprint Management

One of the major challenges of computing in recent years has been energy consumption. Increasing reliance on computing resources has created huge energy economic and environmental issues. It is estimated that by 2025, data centers itself would consume around 20% of global electricity and emit up to 5% of the world’s carbon emissions [31]. Energy efficiency in computing stack can be achieved at different levels from managing hardware circuits to data center level workload management. Recent studies have shown promising results of AI techniques in device energy-optimized frequency management [29], intelligent and energy-efficient workload management (scheduling, consolidation), reducing cooling energy by fine
Cloud economics is a complex problem and requires vast domain knowledge and expertise to price services adequately. It is also important for consumers to easily understand pricing models and estimate the cost for their deployments. Current pricing models largely depend on subscription types, e.g., reserved, on demand, or spot instances. The pricing for these subscription models is driven by standard economic principles like auction mechanisms, cost benefit analysis, profit, and revenue maximization, etc. These pricing problems are solved using techniques like Operation Research (OR) or stochastic game theory approaches [38]. However, such methods are largely inflexible, and they either overprice the services or results in loss of revenues for cloud service providers. In this regard, ML models can be used to forecast the resource demand and accordingly excessive resources can be pooled in the open market for consumers. In addition, pricing can be more dynamic based on this forecasted demand response that benefits both consumers and service providers.

F. Generating the Large-scale Data Sets

Machine learning models require large amounts of training data for improved accuracy. However, access to large scale data is limited due to privacy and lack of capabilities to generate a large quantity of data from infrastructure. To that end, AI models itself can be used to generate large-scale synthetic datasets that closely depict the real-world datasets. For instance, given a small quantity of data as input, Generative Adversarial Networks (GANs) can be used to produce large-scale data [39]. Such methods are highly feasible in generating time-series data of DCS infrastructure. Moreover, these methods can also be leveraged to adequately produce datasets from the incomplete datasets. Such large-scale data sets are necessary to train efficient predictive models and bootstrap the RL agents to achieve a reasonable efficiency in its policies.

G. Future System Architectures

Cloud services have recently undergone a shift from monolithic applications to microservices, with hundreds or thousands of loosely-coupled microservices comprising the end-to-end application. In [4] the authors explore the implications of these microservices on hardware and system architectures, bottlenecks therein, and lessons for future data center server design. Microservices affect the computation to communication ratio, as communication dominates, and the amount of computation per microservice decreases. Similarly, microservices require revisiting whether big or small servers are preferable. In [18], the authors use an always-on, fleetwide monitoring system, to track front-end stalls, L-cache and D-cache miss (as cloud microservices do not lend them amenable to cache locality unlike traditional workloads) across hundreds and thousands of servers across Google’s warehouse-scale computers. The enormous amounts of data generated and analyzed help to provide valuable feedback to the design of next-generation servers. Similarly, deep learning can be used to diagnose unpredictable performance in cloud systems. Data from such systems can thus be invaluable for the hardware and system architectures of future DCS.

H. Other Avenues

Along with the aforementioned directions, AI-centric solutions can be applied to several other RMS tasks including optimizing the heuristics itself [19], network optimizations (e.g. TCP window size, SDN routing optimization problems), and storage infrastructure management [20]. Moreover, learning-based systems can be extended across different computing system stack, from lower levels of abstraction including hardware design, compiler optimizations, operating system policies to a higher level interconnected distributed system platforms[13].

D. Security and Privacy Management

As cybersystems have become sophisticated and widely interconnected, preserving the privacy of data, and securing resources from external threats has become quintessential. Dealing with security has the implications far beyond resource management, including privacy-preserving and complying with the respective jurisdiction’s rules, etc. For instance, RMS with user level schedulers can classify input records and process records with privacy sensitivity within local resource environments (e.g., private cloud) and others on public clouds. One such work is carried out by the University of Washington [33] wherein a deep learning method is used to classify medical records into sensitive and nonsensitive based on data privacy. They created a user level scheduler for the Aneka Cloud application platform and able to process sensitive medical records on their hospital private cloud and nonsensitive records on Amazon AWS EC2 public cloud.

If resources are maliciously compromised, RMS should adapt to the requirements of the security concerns. There has been widespread use of ML algorithms in many aspects of security management. It includes AI-based Intruder Detection Systems (IDS) to prevent unauthorized access, anomaly detection [34], [35] to identify the deviations in the application/resource behaviors. AI techniques including Artificial Neural Networks (ANNs), ensemble learning, Bayesian networks, association rules, and several classification techniques like SVM can be effectively utilized to address these security-related problems [36]. They can also be predominantly used in preventing Denial-of-service attacks (DDoS) by analyzing traffic patterns and filtering suspected traffic, hence, preventing the system failures [37]. Such measures vastly help to manage the resources securely and thus increasing the reliability of the system.

E. Managing Cloud Economics

Cloud economics is a complex problem and requires vast domain knowledge and expertise to price services adequately. It is also important for consumers to easily understand pricing models and estimate the cost for their deployments. Current pricing models largely depend on subscription types, e.g., reserved, on demand, or spot instances. The pricing for these subscription models is driven by standard economic principles like auction mechanisms, cost benefit analysis, profit, and revenue maximization, etc. These pricing problems are solved using techniques like Operation Research (OR) or stochastic game theory approaches [38]. However, such methods are largely inflexible, and they either overprice the services or results in loss of revenues for cloud service providers.
CONCEPTUAL MODEL FOR AI-CENTRIC RMS

In the AI-centric RMS (Resource Management Systems) system, models need to be trained and deployed for the inference that can be used by the RMS for different tasks. However, integrating data-driven models into DCS platforms in a scalable and generic manner is challenging and is still at a conception stage. In this regard, as shown in Figure 2, we provide a high-level architectural model for such data-driven RMS. The important elements of this system are explained below. It consists of three entities:

Users/ Applications: Users requiring computing resources or services interact with the middleware using APIs or interfaces.

AI-centric RMS Middleware: This is responsible for performing different tasks related to managing user requests and underlying infrastructure. The AI-centric RMS tasks continuously interact with the data-driven models for accurate and efficient decisions. The RMS needs to perform various tasks including provisioning of the resources, scheduling them on appropriate nodes, monitoring in runtime, dynamic optimizations like migrations, and consolidations [12] to avoid the potential SLA violations. Traditionally, these tasks are done using the algorithms implemented within the RMS system that would execute the policies based on the heuristics or threshold-based policies. However, in this AI-centric RMS, the individual RMS operations are aided with inputs from the data-driven models. The data-driven AI models are broadly categorized into two types, (1) predictive models, and (2) adaptive RL models. In the former, models are trained offline using supervised or unsupervised ML algorithms utilizing historical data collected from the DCS environment that includes features from resources, entities, and application services. This data is stored in databases and data-engineering is done such as preprocessing, cleaning, normalizing, to suit the requirements of AI models. Thus, this offline training can be done on remote cloud nodes to benefit from the specialized powerful computing resources. The trained models can be deployed on specialized inference devices like Google Edge TPU and Intel Habana. Choosing the optimal place and deciding where to deploy these ML models depends on where the RMS engine is deployed in the environment and this is itself a challenging research topic that should be addressed as described in Section III-B. In the latter case, run-time adaptive models such as Reinforcement Learning (RL) that continue to improve their policies based on agents’ interactions and system feedback. It requires both initial learning and runtime policy improvement methods that need to be updated after every episode (certain time reaching to terminal state). The RMS operations can interact with both the predictive and RL-based data-driven models using the RESTful APIs in runtime [12].

DCS Infrastructure: The computing infrastructure comprises heterogeneous resources including sensors, gateway servers, edge data centers, and remote clouds. Therefore, adopting the data-driven AI-centric RMS models needs a significant change in the way current RMS systems are designed and implemented, as well as data collection methods, interfaces, and deployment policies that can be easily integrated into existing environments.

DEMONSTRATION CASE STUDIES

In this section, we present two use cases that have applied AI techniques to two different problems: (1) data-driven configuration of device frequencies for energy-efficient workload scheduling in cloud GPUs, (2) data center resource management using ML models.

A. Data-Driven GPU Clock Configuration and Deadline-aware Scheduling

Graphics Processing Units (GPUs) have become the de-facto computing platform for advanced compute-intensive applications such as video processing and autonomous cars. Additionally, ML models are massively reliant on the GPUs for training due to their efficient SIMD architectures that are highly suitable for parallel computations. However, the energy consumption of GPUs is a critical problem. Dynamic Voltage Frequency Scaling (DVFS) is a widely used technique to reduce the dynamic power of GPUs. Yet, configuring the optimal clock frequency for essential performance requirements is a non-trivial task due to the complex nonlinear relationship between the application’s runtime performance characteristics,
energy, and execution time. It becomes even more challenging when different applications behave distinctively with similar clock settings. Simple analytical solutions and standard GPU frequency scaling heuristics fail to capture these intricacies and scale the frequencies appropriately. In this regard, we propose a data-driven frequency scaling technique by predicting the power and execution time of a given application over different clock settings. Furthermore, using this frequency scaling by prediction models, we present a deadline-aware application scheduling algorithm to reduce energy consumption while simultaneously meeting their deadlines.

The high-level overview of the system is given in Fig. 3. It is broadly classified into two parts, predictive modeling, and data-driven scheduler. In the first part, we collect the training data that consists of three parts, profiling information, energy-time measurements, and respective frequency configurations. We then predict two entities for a given application and frequency configuration, i.e., energy consumption and execution time. Subsequently, in the second part, the new applications arrive with the dead-line requirements and minimal profiling data from a default clock frequency execution. The scheduler finds correlated application data using the clustering technique, and this data is used for predicting the energy and execution time over all frequencies. Finally, based on the deadline requirements and energy efficiency, the scheduler scales the frequencies and executes the applications. We use twelve applications for evaluation from two standard GPU benchmarking suites, Rodinia and Polybench. The training data is generated from profiling the applications using nvprof, a standard profiling tool from NVIDIA. We collected around 120 key features representing key architectural, power, and performance counters. To build the predictive models, we explored several regression-based ML models including Linear Regression (LR), lasso-linear regression (Lasso), and Support Vector Regression (SVR). Also, ensemble-based gradient boosting techniques, extreme Gradient Boosting (XGBoost), and CatBoost. The goal is to build energy and execution time prediction models for each GPU device to assist the frequency configuration.

We conduct extensive experiments on NVIDIA GPUs (TESLA P100). The experiment results have shown that our prediction models with CatBoost have high accuracy with the average Root Mean Square Error (RMSE) values of 0.38 and 0.05 for energy and time prediction, respectively (Figure 4a, Figure 4b). Also, the scheduling algorithm consumes 15.07% less energy (Figure 6) as compared to the baseline policies (de-
Applications

Fig. 8: Normalised application completion time compared to deadline

fault and max clock) while meeting the application deadlines as our approach can scale the frequencies that have energy-efficient settings (Figure 7) also able to meet performance requirements. More details on prediction-models, scheduling algorithms, and implementation can be found in [29].

B. Industrial Cloud Data Center Management

Data centers are the backbone infrastructures of cloud computing today. A data center is a complex Cyber-Physical-System (CPS) consists of numerous elements. It houses thousands of rack-mounted physical servers, networking equipment, sensors monitoring server, and room temperature, a cooling system to maintain acceptable room temperature, and many facility-related subsystems. The data center is one of the highest power density CPS of up to 20 kW per rack dissipating an enormous amount of heat. This poses a serious challenge to manage resources energy efficiently and provide reliable services to users. Optimizing data center operation requires tuning the hundreds of parameters belonging to different subsystems where heuristics or static solutions fail to yield a better result. Moreover, even a 1% improvement in data center efficiency leads to savings in millions of dollars over a year and also helps to reduce the carbon footprints. Therefore, optimizing these data centers using potential AI techniques is of great importance. Accordingly, we discuss two real-time AI-based RMS systems built by researchers at Google and Microsoft Azure Cloud.

ML-centric cloud [12] is an ML-based RMS system at an inception stage from the Microsoft Azure cloud. They built Resource Control (RC)—a general ML and prediction serving system that provides the insights of workload and infrastructure for re-source manager of Azure compute fabric. The input data collected from the virtual machine and physical servers. The models are trained using a gradient boosting tree and trained to predict the different outcomes for user’s VMs such as average CPU utilization, deployment size, lifetime, and blackout time. The Azure resource manager interacts with these models in runtime. For instance, the scheduler queries for virtual machine lifetime, and based on the predicted value, the appropriate decision is taken to increase infrastructure efficiency. Applying these models to several other resource management tasks is under consideration including power management inside Azure infrastructure.

Similarly, Google has also applied ML techniques to optimize the efficiency of their data centers. Specifically, they have used ML models to change the different knobs of the cooling system thus saving a significant amount of energy [15]. The ML models are built using simple neural networks and trained to improve the PUEs (Pow-er Usage Effectiveness), a standard metric to measure the data center efficiency. The input features include total IT workload level, network load, parameters affecting the cooling system like outside temperature, wind speed, number of active chillers, and others. The cooling subsystems are configured according to the predictions and results have shown that the 40% savings are achieved in terms of their energy consumption. Therefore, the brief uses cases presented here strongly attest to the feasibility of AI-centric solutions in different aspects of resource management of distributed systems.

VII. Conclusions

Future distributed computing platforms will be massively complex, large scale, and heterogeneous enabling the development of highly connected resource-intensive business, scientific, and personal applications. Managing resources in such infrastructure require data-driven AI approaches that derive key insights from the data, learn from the environments, and take resource management decisions accordingly. In this paper, we have discussed the challenges associated with the adoption of AI-centric solutions in RMS. We identified the potential future directions describing different RMS tasks where we can apply AI techniques. Moreover, we presented the conceptual AI-centric RMS model. Finally, we demonstrated the two use-cases of AI-Centric solutions in resource management of distributed systems.

The state-of-the-art rule-based or heuristics resource management solutions have become inadequate in modern distributed computing platforms. The RMS policies need to deal with massive scale, heterogeneity, and varying workload requirements. As a result, we believe that AI techniques and tools can be widely utilized in numerous RMS tasks including, monitoring, resource provisioning, scheduling, and many others. Such approaches are highly adaptive and better suited to deal with the resource management complexities, enabling optimized resource management from processor to middleware platforms, and application management.

REFERENCES
